• Title/Summary/Keyword: Total impulse ratio

Search Result 22, Processing Time 0.022 seconds

Hardware Implementation of RUNCODE Encoder for JBIG2 Symbol ID Encoding (JBIG2 심벌 ID 부호화를 위한 런코드 부호기의 하드웨어 구현)

  • Seo, Seok-Yong;Ko, Hyung-Hwa
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.298-306
    • /
    • 2011
  • In this paper, the RUNCODE encoder hardware IP was designed and implemented for symbol ID code length encoding, which is one of major modules of JBIG2 encoder for FAX. ImpulseC Codeveloper and Xilinx ISE/EDK program are used for the hardware generation and synthesis of VHDL code. The synthesized hardware was downloaded to Virtex-4 FX60 FPGA on ML410 development board. The synthesized hardware utilizes 13% of total slice of FPGA. Using Active-HDL tool, the hardware was verified showing normal operation. Compared with the software operating using Microblaze cpu on ML410 board, the synthesized hardware was better in operation time. The improvement ratio of operation time between the synthesized hardware and software showed about 40 times faster than software only operation. The synthesized H/W and S/W module cooperated to succeed in compressing the CCITT standard document.

Anisotropic Total Variation Denoising Technique for Low-Dose Cone-Beam Computed Tomography Imaging

  • Lee, Ho;Yoon, Jeongmin;Lee, Eungman
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.150-156
    • /
    • 2018
  • This study aims to develop an improved Feldkamp-Davis-Kress (FDK) reconstruction algorithm using anisotropic total variation (ATV) minimization to enhance the image quality of low-dose cone-beam computed tomography (CBCT). The algorithm first applies a filter that integrates the Shepp-Logan filter into a cosine window function on all projections for impulse noise removal. A total variation objective function with anisotropic penalty is then minimized to enhance the difference between the real structure and noise using the steepest gradient descent optimization with adaptive step sizes. The preserving parameter to adjust the separation between the noise-free and noisy areas is determined by calculating the cumulative distribution function of the gradient magnitude of the filtered image obtained by the application of the filtering operation on each projection. With these minimized ATV projections, voxel-driven backprojection is finally performed to generate the reconstructed images. The performance of the proposed algorithm was evaluated with the catphan503 phantom dataset acquired with the use of a low-dose protocol. Qualitative and quantitative analyses showed that the proposed ATV minimization provides enhanced CBCT reconstruction images compared with those generated by the conventional FDK algorithm, with a higher contrast-to-noise ratio (CNR), lower root-mean-square-error, and higher correlation. The proposed algorithm not only leads to a potential imaging dose reduction in repeated CBCT scans via lower mA levels, but also elicits high CNR values by removing noisy corrupted areas and by avoiding the heavy penalization of striking features.

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.

Experimental Study on the Flow Characteristics of Supersonic Turbine with the Axial Gap Ratios (초음속 터빈의 축방향 간격비에 따른 유동 특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.136-142
    • /
    • 2007
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The supersonic cascade with a 2-dimensional supersonic nozzle was tested for the axial gap ratio (${\delta}$) of the supersonic turbine that is the one of the turbine design parameter. Firstly, the flow was visualized by a single pass Schlieren system. Next, total and static pressure of the cascade were measured by a pressure scanning system. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

Internal Ballistic Analysis of Solid Propellant Micro-Thruster (초소형 고체 추진제 추력기의 내탄도 성능연구)

  • Yang, June-Seo;Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.215-218
    • /
    • 2007
  • Internal Ballistic modeling and performance prediction for solid propellant micro thruster was performed with heat loss to the chamber wall as an important factor of miniaturization. Simple l-D end-burner type thruster and general HTPB-AP type composite propellant were selected for computation model. The results showed that the performance loss with the heat loss to the surroundings becomes larger as the surface-to-volume ratio is increased. In this case, the total impulse was reduced about 3% of the case in adiabatic condition.

  • PDF

The Impact of Chinese Land Supply Policies on the Real Estate Market (중국의 토지 공급 정책이 부동산 시장에 미치는 영향)

  • Yi-bo Liu;Yeon-jae Lee;Seung-woo Shin
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.225-237
    • /
    • 2024
  • Purpose - This study aims to explore the relationship between housing and land prices, with a specific emphasis on the impact of government policies on these factors such as land supply quantity and the ratio of residential land to total land supplied. The goal is to identify the most effective government intervention strategies for controlling both housing and land prices. Design/methodology/approach - Data from 70 primary and medium-sized cities in China spanning from 2003 to 2017 are utilized in this research. The analysis employs a panel vector autoregressive (PVAR) model, with a primary focus on examining the relationships among housing prices, land prices, and government intervention policies. Findings - Housing and land prices are influenced by various factors. Through impulse response analysis and variance decomposition, it is observed that both housing and land prices are predominantly influenced by their internal dynamics, with comparatively weaker effects attributed to policy interventions. Research implications or Originality - By investigating the impact of government policies on housing and land prices, This study establishes a foundation for effective price control measures. Our study advocates for a comprehensive examination of China's land supply mechanism to enhance understanding of the pathways through which government policies influence the markets.

Hardware Design for JBIG2 Encoder on Embedded System (임베디드용 JBIG2 부호화기의 하드웨어 설계)

  • Seo, Seok-Yong;Ko, Hyung-Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.182-192
    • /
    • 2010
  • This paper proposes the hardware IP design of JBIG2 encoder. In order to facilitate the next generation FAX after the standardization of JBIG2, major modules of JBIG2 encoder are designed and implemented, such as symbol extraction module, Huffman coder, MMR coder, and MQ coder. ImpulseC Codeveloper and Xilinx ISE/EDK program are used for the synthesis of VHDL code. To minimize the memory usage, 128 lines of input image are processed succesively instead of total image. The synthesized IPs are downloaded to Virtex-4 FX60 FPGA on ML410 development board. The four synthesized IPs utilize 36.7% of total slice of FPGA. Using Active-HDL tool, the generated IPs were verified showing normal operation. Compared with the software operation using microblaze cpu on ML410 board, the synthesized IPs are better in operation time. The improvement ratio of operation time between the synthesized IP and software is 17 times in case of symbol extraction IP, and 10 times in Huffman coder IP. MMR coder IP shows 6 times faster and MQ coder IP shows 2.2 times faster than software only operation. The synthesized H/W IP and S/W module cooperated to succeed in compressing the CCITT standard document.

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jongjae;Shin, Bong Gun;Kim, Kuisoon;Jeong, Eunhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • In a supersonic turbine, A rotor overlap technique reduced the chance of chocking in the rotor passage, and made the design pressure ratio satisfied. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, an approximate optimization technique was appled to find the optimal shape of overlap which maximizes the improvement of the turbine performance. The design variables were shape factors of a rotor overlap. An optimal design for rotor overlap reduces leakage mass flow rate at tip clearance by about 50% and increases about 4% of total-static efficiency compared with the base model. It was found that the most effective design variable is the tip overlap and that the hub overlap size is the lowest.

FRF Analysis of a Vehicle Passing the Bump Barrier (둔턱 진행 차량의 주파수응답 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2022
  • The purpose of this study was to investigate the frequency characteristics of forced vibration considering the vehicle progress. And the vibration characteristics in frequency domain that occur, when vehicle passes the bump, were analyzed. The responses such as displacement, velocity and acceleration were obtained through numerical analysis, and FFT processing was performed to analyze the frequency response function(FRF) characteristics. In particular, the location of vehicle eigenmodes and external excitation modes was clearly shown and analyzed. In the forced vibration model by external force, the behavior of the eigenmode in power spectrum and real and imaginary parts were also analyzed. The mode characteristics were also analyzed in each FRF. It was approximated by assuming total excitation force by considering the exciting frequency using impulse and sine wave forces, which can give the amplitude and frequencies. The response characteristics of forced oscillations having different mass, damping and stiffness have been systematically discussed.

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.