• Title/Summary/Keyword: Total column density of CO

검색결과 7건 처리시간 0.02초

Enhancement of Ozone and Carbon Monoxide Associated with Upper Cut-off Low during Springtime in East Asia

  • Moon, Yun-Seob;Drummond, James R.
    • 한국대기환경학회지
    • /
    • 제26권5호
    • /
    • pp.475-489
    • /
    • 2010
  • In order to verify the enhancement of ozone and carbon monoxide (CO) during springtime in East Asia, we investigated weather conditions and data from remote sensors, air quality models, and air quality monitors. These include the geopotential height archived from the final (FNL) meteorological field, the potential vorticity and the wind velocity simulated by the Meteorological Mesoscale Model 5 (MM5), the back trajectory estimated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the total column amount of ozone and the aerosol index retrieved from the Total Ozone Mapping Spectrometer (TOMS), the total column density of CO retrieved from the Measurement of Pollution in the Troposphere (MOPITT), and the concentration of ozone and CO simulated by the Model for Ozone and Related Chemical Tracers (MOZART). In particular, the total column density of CO, which mightoriginate from the combustion of fossil fuels and the burning of biomass in China, increased in East Asia during spring 2000. In addition, the enhancement of total column amounts of ozone and CO appeared to be associated with both the upper cut-off low near 500 hPa and the frontogenesis of a surface cyclone during a weak Asian dust event. At the same time, high concentrations of ozone and CO on the Earth's surface were shown at the Seoul air quality monitoring site, located at the surface frontogenesis in Korea. It was clear that the ozone was invaded by the downward stretched vortex anomalies, which included the ozone-rich airflow, during movement and development of the cut-off low, and then there was the catalytic photochemical reaction of ozone precursors on the Earth's surface during the day. In addition, air pollutants such as CO and aerosol were tracked along both the cyclone vortex and the strong westerly as shown at the back trajectory in Seoul and Busan, respectively. Consequently, the maxima of ozone and CO between the two areas showed up differently because of the time lag between those gases, including their catalytic photochemical reactions together with the invasion from the upper troposphere, as well as the path of their transport from China during the weak Asian dust event.

MASS ESTIMATE TECHNIQUES OF MOLECULAR CLOUDS

  • Lee, Young-Ung
    • 천문학논총
    • /
    • 제9권1호
    • /
    • pp.55-68
    • /
    • 1994
  • We have reviewed three different techniques to estimate molecular cloud mass, and discussed the uncertainties involved. We found that determination of the most important parameter, the $^{13}CO$ abundance, is not very sensitive to the real LTE conditions, and that any possible error in deriving LTE column density may not introduce an error in the total gas column density, as far as the visual extinction is established for the object cloud. The virial technique always endows the largest mass estimate as there are several uncertainties, even if the cloud is in virial equilibrium. The strong indicator of the cloud perturbation is the centroid velocity dispersion. The mass using CO luminosity is based on the empirical law, but weakly dependent on the virial assumption, thus it still gives a larger mass estimate. The mass discrepancy is likely to be inevitable, and a factor of two or three difference between mass estimates could easily be attributed to the uncertainties mentioned above. The LTE mass estimate may be the most reliable one if we use the relation visual extinction and $^{13}CO$ column density of the object cloud, and the intercept is included.

  • PDF

CO OBSERVATIONS AND STABILITY ANALYSIS OF B133 AND B134

  • Hong, S.S.;Kim, H.G.;Park, S.H.;Park, Y.S.;Imaoka, K.
    • 천문학회지
    • /
    • 제24권1호
    • /
    • pp.71-94
    • /
    • 1991
  • With the 14 m radio telescope at DRAO and the 4 m at Nagoya University, we have made detailed maps of $^{12}CO$ and $^{13}CO$ emissions from two Barnard objects B133 and B134 in the $J=1{\rightarrow}O$ rotational transition lines. Usual LTE analyses of the CO observations led us to determine the distribution of column densities over an entire area encompassing both globules. Total gas masses estimated from the column density map are $90\;M_{\odot}$ and $20\;M_{\odot}$ for B133 and B134, respectively. The radial velocity of B133 is red shifted with respect to B134 by $0.8\;km\;s^{-1}$, which is too lagre to bind the two clouds as a binary system. We have shown that the usual stability analysis based on the simplified version of virial theorem with the second time-derivative of the moment of inertia term $\ddot{I}$ being ignored could mislead us in determining whether a given cloud eventually collapses or not. The lull version of the scalar virial theorem with the $\ddot{I}$ term is shown to be useful in following up the time-dependent variations of the cloud size R and its streaming velocity $\dot{R}$ as functions of time. Results of our stability analysis suggest that B133 will eventually collapse in $(2{\sim}4){\times}10^6$ years.

  • PDF

DISTRIBUTION AND KINEMATICS OF FORMALDEHYDE IN DARK CLOUDS IN M17 AND NGC 2024

  • MINN Y. K.;LEE Y. B.
    • 천문학회지
    • /
    • 제27권1호
    • /
    • pp.31-44
    • /
    • 1994
  • The 4.8GHz formaldehyde absorption line in the dark clouds in M17 and NGC 2024 regions has been mapped. In both nebulae, we detected two $H_2CO$ line components. In M17, the 24km $S^{-1}$ cloud is closely associated with the HII region located in front of the radio continuum source, and the 19km $S^{-1}$ cloud is associated with the visual dark clouds with a larger extent which are closer to us. The 19km $S^{-1}$ cloud has a mass motion approaching to the HII region. In both clouds, a velocity gradient from the north-east to the south-west directions is observed. The linewidth has no variation indicating no collapsing motion. In NGC 2024, the 9km $S^{-1}$ feature is extended along the dark bar in front of the bright nebula and a weak second component at 13km $S^{-1}$ is confined to the immediate vicinity of the radio source. Indications are that the 9km $S^{-1}$ cloud is physically associated with the dark bar and the 13km $S^{-1}$ cloud is located behind the radio source. The angular extent, the column density, and the total mass of the clouds are derived. The radial velocities of other molecular lines observed in these clouds are compared.

  • PDF

SGR B2 지역에 있는 HCO+ 분자운의 특성 연구 ([ HCO+ ]CLOUDS IN THE SGR B2 REGION)

  • 민영철
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권4호
    • /
    • pp.233-242
    • /
    • 2004
  • 우리은하중심에 있는 Sgr B2 분자운 지역에 대하여 $HCO^{+}1-0$ 천이선을 관측하여 이 지역의 역학적, 화학적 특성을 연구하였다. 이 지역에는 속도가 ${\sim}50$${\sim}100kms^{-1}$인 가스 구름이 상호작용을 하고 있는 것으로 보이며, 이에 의하여 Sgr B2 분자운의 새로운 별-탄생이 촉진될 수 있다고 여겨진다. 속도성분이 ${\sim}50kms^{-1}$인 지역에서, 뚜렷한 가스 집중을 보이는 'OF38 분자운'('Odenwald & Fazio FIR 38' Cloud)이 새로이 발견되었다. 이 분자운의 $HCO^+$ 칼럼밀도는 $N(HCO^+)=(2-5){\times}10^{14}cm^{-2}$, 크기는 약 15pc이며, 총 질량은 약 $10^6M_{\odot}$으로 계산되었다. 그리고 이 Sgr B2 지역에는 속도 범위가 $100kms^{-1}$에 이르는 큰 규모의 터뷸런트한 컴포넌트가 넓게 퍼져 존재하며, 이 성분의 $N(HCO^+)=1{\times}10^{13}cm^{-2}$으로 상당한 양으로 존재함을 알 수 있다. 그러나 이 지역에서 관측되는 $HCO^+$의 생성반응은, 기존에 제안되었던 $H^{+}_3$와 CO의 반응보다는, 충격파의 영향에 의하여 증가하는 $C^+$와 OH의 반응에서 보다 효과적으로 생성될 것으로 보인다. 새로이 발견된 'OF38 분자운'의 물리 화학적 특성을 밝히는 일은 앞으로의 과제라고 생각한다.

Quantitative Vertebral Bone Density Seen on Chest CT in Chronic Obstructive Pulmonary Disease Patients: Association with Mortality in the Korean Obstructive Lung Disease Cohort

  • Hye Jeon Hwang;Sang Min Lee;Joon Beom Seo;Ji-Eun Kim;Hye Young Choi;Namkug Kim;Jae Seung Lee;Sei Won Lee;Yeon-Mok Oh
    • Korean Journal of Radiology
    • /
    • 제21권7호
    • /
    • pp.880-890
    • /
    • 2020
  • Objective: Patients with chronic obstructive pulmonary disease (COPD) are known to be at risk of osteoporosis. The purpose of this study was to evaluate the association between thoracic vertebral bone density measured on chest CT (DThorax) and clinical variables, including survival, in patients with COPD. Materials and Methods: A total of 322 patients with COPD were selected from the Korean Obstructive Lung Disease (KOLD) cohort. DThorax was measured by averaging the CT values of three consecutive vertebral bodies at the level of the left main coronary artery with a round region of interest as large as possible within the anterior column of each vertebral body using an in-house software. Associations between DThorax and clinical variables, including survival, pulmonary function test (PFT) results, and CT densitometry, were evaluated. Results: The median follow-up time was 7.3 years (range: 0.1-12.4 years). Fifty-six patients (17.4%) died. DThorax differed significantly between the different Global Initiative for Chronic Obstructive Lung Disease stages. DThorax correlated positively with body mass index (BMI), some PFT results, and the six-minute walk distance, and correlated negatively with the emphysema index (EI) (all p < 0.05). In the univariate Cox analysis, older age (hazard ratio [HR], 3.617; 95% confidence interval [CI], 2.119-6.173, p < 0.001), lower BMI (HR, 3.589; 95% CI, 2.122-6.071, p < 0.001), lower forced expiratory volume in one second (FEV1) (HR, 2.975; 95% CI, 1.682-5.262, p < 0.001), lower diffusing capacity of the lung for carbon monoxide corrected with hemoglobin (DLCO) (HR, 4.595; 95% CI, 2.665-7.924, p < 0.001), higher EI (HR, 3.722; 95% CI, 2.192-6.319, p < 0.001), presence of vertebral fractures (HR, 2.062; 95% CI, 1.154-3.683, p = 0.015), and lower DThorax (HR, 2.773; 95% CI, 1.620-4.746, p < 0.001) were significantly associated with all-cause mortality and lung-related mortality. In the multivariate Cox analysis, lower DThorax (HR, 1.957; 95% CI, 1.075-3.563, p = 0.028) along with older age, lower BMI, lower FEV1, and lower DLCO were independent predictors of all-cause mortality. Conclusion: The thoracic vertebral bone density measured on chest CT demonstrated significant associations with the patients' mortality and clinical variables of disease severity in the COPD patients included in KOLD cohort.

DENSE MOLECULAR CLOUDS IN THE GALACTIC CENTER REGION II. H13CN (J=1-0) DATA AND PHYSICAL PROPERTIES OF THE CLOUDS

  • Lee, Chang-Won;Lee, Hyung-Mok
    • 천문학회지
    • /
    • 제36권4호
    • /
    • pp.271-282
    • /
    • 2003
  • We present results of a $H^{13}CN$ J=1-0 mapping survey of molecular clouds toward the Galactic Center (GC) region of $-1.6^{\circ}{\le}{\iota}{\le}2^{\circ}$ and $-0.23^{\circ}{\le}b{\le}0.30^{\circ}$ with 2' grid resolution. The $H^{13}CN$ emissions show similar distribution and velocity structures to those of the $H^{12}CN$ emissions, but are found to better trace the feature saturated with $H^{12}CN$ (1-0). The bright components among multi-components of $H^{12}CN$ line profiles usually appear in the $H^{13}CN$ line while most of the dynamically forbidden, weak $H^{12}CN$ components are seldom detected in the $H^{13}CN$ line. We also present results of other complementary observations in $^{12}CO$ (J=1-0) and $^{13}CO$ (J=1-0) lines to estimate physical quantities of the GC clouds, such as fractional abundance of HCN isotopes and mass of the GC cloud complexes. We confirm that the GC has very rich chemistry. The overall fractional abundance of $H^{12}CN$ and $H^{13}CN$ relative to $H_2$ in the GC region is found to be significantly higher than those of any other regions, such as star forming region and dark cloud. Especially cloud complexes nearer to the GC tend to have various higher abundance of HCN. Total mass of the HCN molecular clouds within $[{\iota}]{\le}6^{\circ}$ is estimated to be ${\~}2 {\times}10^7\;M_{\bigodot}$ using the abundances of HCN isotopes, which is fairly consistent with previous other estimates. Masses of four main complexes in the GC range from a few $10^5$ to ${\~}10^7\;M_{\bigodot}$ All the HCN spectra with multi-components for the four main cloud complexes were investigated to compare the line widths of the complexes. The largest mode (45 km $s^{-1}$) of the FWHM distributions among the complexes is in the Clump 2. The value of the mode tends to be smaller at the farther complexes from the GC.