• Title/Summary/Keyword: Total Volatile Organic Compounds

Search Result 307, Processing Time 0.023 seconds

Changes in Quality of Spray-dried and Freeze-dried Takju Powder during Storage (분무 및 동결 건조 탁주 분말의 저장 중 품질변화)

  • Jeong, Jin-Woong;Park, Kee-Jai;Kim, Myung-Ho;Kim, Dong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.513-520
    • /
    • 2006
  • Spray-dried (SD) and freeze-dried (FD) takju powders were stored at 5, 15 and $25^{\circ}C$, and various quality characteristics such as moisture, amino nitrogen, color value, total viable cell count, total sugar, reducing sugar organic acid, and flavor compounds were measured for 50 days at 10-day intervals. After 50 days of storage, the moisture content was increased from an initial 6.64% to 7.24-7.38% in the SD powder, and from an initial 4.86 to 5.43-5.61% in the FD powder. pH, total acid content and total viable cell counts were slightly increased. Organic acid content was decreased in the SD powder from an initial 3,949.9 mg% to 805.9-922.3 mg%, and in the FD powder from an initial 5,171.5 mg% to 3,646.0-4,110.2 mg%. Amino nitrogen content was increased in the SD powder from an initial 1.2% to 1.9-2.2% and in the FD powder from an initial 1.9% to 2.2-2.5%. Total sugar and reducing sugar contents were increased in the SD powder from an initial 17.2% and 4.0% to 25.9-27.3% and 5.8-6.9%, and in the FD powder from an initial 19.1% and 5.2% to 29.2-30.2% and 8.3-8.8%, respectively. With increasing storage time, L and b values in the SD powder increased slowly, while L value in the FD powder tended to decrease and b value tended to increase. About 20 major volatile flavor components were identified in the SD and FD powders by GC-MS and all such component levels were decreased with increasing storage time.

Estimation of Personal Exposure to Air Pollutants for Workers Using Time Activity Pattern and Air Concentration of Microenvironments (시간활동 양상과 국소환경 농도를 이용한 근로자의 유해 공기오염물질 노출 예측)

  • Lee, Hyunsoo;Lee, Seokyong;Lee, Byoungjun;Heo, Jung;Kim, Sunshin;Yang, Wonho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.436-445
    • /
    • 2014
  • Objectives: Time-activity studies have become an integral part of comprehensive exposure assessment and personal exposure modeling. The aims of this study were to estimate exposure levels to nitrogen dioxide($NO_2$) and volatile organic compounds(VOCs), and to compare estimated exposures by using time-activity patterns and indoor air concentrations. Methods: The major microenvironments for office workers were selected using the Time-Use Survey conducted by the National Statistical Office in Korea in 2009. A total of 9,194 and 6,130 workers were recruited for weekdays and weekends, respectively, from the Time-Use Survey. It appears that workers were spending about 50% of their time in the house and about 30% of their time in other indoor areas during the weekdays. In addition, we analyzed the time-activity patterns of 20 office workers and indoor air concentrations in Daegu using a questionnaire and time-activity diary. Estimated exposures were compared with measured concentrations using the time-weighted average analysis of air pollutants. Conclusions: According to the time-activity pattern for the office workers, time spent in the residence indoors during the summer and winter have been shown as $11.12{\pm}2.20$ hours and $12.48{\pm}1.77$ hours, respectively, which indicates higher hours in the winter. Time spent in the office in the summer has been shown to be 1.5 hours higher than in the winter. The target pollutants demonstrate a positive correlation ($R^2=0.076{\sim}0.553$)in the personal exposure results derived from direct measurement and estimated personal exposure concentrations by applying the time activity pattern, as well as measured concentration of the partial environment to the TWA model. However, these correlations were not statistically significant. This may be explained by the difference being caused by other indoor environments, such as a bar, cafe, or diner.

Study of Smoking Booth Design for the Treatment of Hazardous Pollutants (유해오염물질 처리를 위한 흡연부스의 설계)

  • Kwon, Woo-Taeg;Kwon, Lee-Seung;Lee, Woo-Sik
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.107-111
    • /
    • 2017
  • The purpose of this study was to develop a Eco smoking booth that can effectively reduce hazardous pollutants generated during smoking and evaluate the efficiency and effectiveness of removing hazardous pollutants. The design and manufacture of an eco-friendly automatic smoking booth equipped with deodorizing facilities, such as inlet - HEPA filter - electrostatic precipitator (EP) - impregnated activated carbon - exhaust port, etc., and the efficiency of removing hazardous pollutants from inside and outside was measured and evaluated. The complex odor removal efficiency was 95.37% inside the smoking booth, and 97.38% at the exit of the preventive facility. The carbon monoxide removal efficiency was 94.25% in the inside and 98.32% in the outlet. In addition, the removal efficiency of particulate matter, (PM1, PM2.5, and PM10) inside the smoking booth was 98.59%, and 98.85% at the outlet. The total volatile organic compounds (TVOCs) decreased from $26,000{\mu}g/m^3$ to $5,203{\mu}g/m^3$ in the smoking booth, resulting in 79.99% removal efficiency. After the ventilator was operated, the measured effluent concentration was $5,019{\mu}g/m^3$, and the removal efficiency was 80.70%. Therefore, the smoking booth designed and manufactured through this study can be applied to the removal of harmful pollutants even in the small working environment in the future.

The Formaldehyde/VOCs Emission of Particleboard with Cross-linked Vinyl Resin (변성 비닐계 접착제를 이용한 파티클보드의 포름알데히드/VOCs 방산특성)

  • Kim, Ki-Wook;Lee, Se Na;Baek, Bong-San;Lee, Byong-Ho;Kim, Hyun-Joong;Choi, Younmee;Jang, Seong Wook
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • This study was used particleboard with urea-formaldehyde resin and cross linking vinyl resin. Manufactured particleboard had high cross linking vinyl resin content that internal bonding strength was low value but flexural strength was increased. For emission test of particleboard using VOC Analyzer, it was confirmed that more cross linking vinyl resin had reduced 4 volatile organic compounds (Toluene, Ethylbenzen, Xylene, Styrene) but also TVOC (Total VOC), 5 VOCs (Benzene, Toluene, Ethylbenzen, Xylene, Styrene) and formaldehyde emissions from manufactured particleboard were also lower emission factor than particleboard with only urea formaldehyde resin.

  • PDF

A Pilot Study on Emission Analysis of Air Pollutants Produced from Portable Recycling of Asphalt Concrete (간이이동법에 의한 폐아스콘 재생시 대기오염물의 배출분석에 대한 실험적 연구)

  • Lee, Byeong-Kyu;Kim, Haeng-Ah;Jeong, Ui-Ryang;Duong, Trang;Chae, Po-Gi;Park, Kyung-Won
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.385-392
    • /
    • 2007
  • Currently, portable equipment for recycling of waste asphalt concrete (ASCON) has been used. However, any air pollution control devices are not attached in the simple portable one. Thus, a lot of air pollutants have been produced from recycling processes of waste ASCON which resulted from aging of paved roads or repavement of roads. This study deals with a preliminary result of concentration analysis of air pollutants obtained from a pilot and a real recycling processes of waste ASCON using simple portable recycling equipment. Air pollutants were taken from 4 steps of the pilot recycling process including an initial heating by liquid petroleum gas (LPG), intermediate heating and melting (H&M) process, final H&M process, and pavement processes using recycled ASCON at the recycling site. Also, air pollutants were taken front 4 steps of the real recycling processes including an initial H&M, final H&M and mixing, loading of recycled ASCON to dump trucks, and at the recycling site after leaving the loaded dump trucks for real pavement sites. The air pollutants measured in this study include volatile organic compounds (VOCs), aldehydes, particulate matter (PM: PM1, PM2.5, PM7, PM10, TSP (total suspended particulate)). The identified concentrations of VOCs increased with increasing time or degree for H&M of waste ASCON. In particular, very high concentrations of the VOCs at the status of complete melting, which is exposed to the air, of the waste ASCON just before paving tv the recycled ASCON at the recycling site. Also, considerable amount of VOCs were identified from the recycling equipment after the dump trucks leaded by recycled ASCON leaved the recycling site for the pavement sites. The relative level of formaldehyde exceeded 80% of the aldehydes Identified in the recycling processes. This is because the waste ASCON is exposed to direct flame of LPG during H&M processes. The PM concentrations measured in the winter recycling processes, such as the loading and rotation processes of waste ASCON into/in the recycling equipment for H&M, were much higher than those in the summer ones. In particular, the concentrations of coarse particles such as PM7 and PM10 during the winter recycling were very high as compared those during the summer one.

Feasibility test for Solidified Fuel with Cow Manure (고체연료화 방법을 적용한 우분 처리 가능성 평가)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.112-119
    • /
    • 2017
  • In this study, the availability of cow manure as raw material for solid fuel production was investigated. Since the water content of the cow manure was too high, it was dewatered using a laboratory hydraulic compressure ($11.3kg/cm^2$). The moisture content of the cow manure decreased from 82.01% to 73.36 wt.%. The dewatered cow manure was homogenized by the experimental apparatus and then put into the rotating cylindrical apparatus. From the consecutive processes, the cow ball-shaped pellet which size ranged from 3.0 to 25.0 mm was produced. The major factor for making palletized fuel from cow manure was the moisture content. Based on the experimental data, the moisture content of cow manure for pelletizing cow manure was identified as 65~75 wt.%. When the moisture content of the cow manure was lower than 30 wt.%, the diameter of the pellets maded from cow manure was smaller than 3 mm. On the other hand, when the water content of the cow manure was higher than 75 wt/%, the diameter of the processed pellets tended to be larger than 25 mm. The characteristics of the processed cow manure pellets was analyzed to be in accordance with the livestock solid fuel quality standard. The pyrolysis characteristic of the pellet was analyzed by raising the heating temperature of the experimental equipment from 200 to $900^{\circ}C$. The mass change between of 20 and $130^{\circ}C$ corresponds to the amount of moisture contained in the cow manure. The amount of moisture was about 15% of the total weight of cow manure samples. The cow manure pellet was thermally stable up to $280^{\circ}C$. It can be interpreted that combustion of cow manure pellet does not occur until the surface temperature reaches $280^{\circ}C$. The mass change of pellet between of 280 and $450^{\circ}C$ was considered to be due to the vaporization of volatile organic compounds (VOCs) present in the cow manure pellet. The maximum production of VOCs was showed near $330^{\circ}C$.

Characteristics of Low Temperature Desorption of Volatile Organic Compounds from Waste Activated Carbon in Cylindrical Cartridge (원통형 활성탄 카트리지 내 폐활성탄의 휘발성 유기화합물 저온 탈착 특성)

  • Kang, Sin-Wook;Lee, Seongwoo;Son, Doojeong;Han, Moonjo;Lee, Tae Ho;Hong, Sungoh
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.79-84
    • /
    • 2021
  • In this study, the waste activated carbon used in the painting process was filled into a cylindrical cartridge and the characteristics of desorption by low temperature gas were investigated. Adsorption and desorption experiments of toluene with activated carbon were conducted to determine the flow rate of desorption. In an experiment where desorption was performed while changing conditions at flow rates of 1, 2 and 4 ㎥ min-1, it was determined that 2 ㎥ min-1 was appropriate due to the high THC concentration and desorption time. In the early stage of the desorption of waste activated carbon, 2-butanone and MIBK (methyl isobutyl ketone) with a low boiling point were generated at a high rate in the gas component, and after that, the concentration of THC decreased and the BTX was desorbed at a high rate. The total calorific value of the gas component generated during the desorption of waste activated carbon was 316 kcal kg-1. From repeating the regeneration of waste activated carbon with toluene five times, it was observed that the iodine value and the specific surface area were relatively lower than that of new activated carbon. In the desorption experiment where two cylindrical cartridges were connected in series, the maximum THC concentration was about 470 ppm.

Development of an IoT Smart Sensor for Detecting Gaseous Materials (사물인터넷 기술을 이용한 가스상 물질 측정용 스마트센서 개발과 향후과제)

  • Kim, Wook;Kim, Yongkyo;You, Yunsun;Jung, Kihyo;Choi, Won-Jun;Lee, Wanhyung;Kang, Seong-Kyu;Ham, Seunghon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.78-88
    • /
    • 2022
  • Objectives: To develop the smart sensor to protect worker's health from chemical exposure by adopting ICT (Information and Communications Technology) technologies. Methods: To develope real-time chemical exposure monitoring system, IoT (Internet of Things) sensor technology and regulations were reviewed. We developed and produced smart sensor. A smart sensor is a system consisting of a sensor unit, a communication unit, and a platform. To verify the performance of smart sensors, each sensor has been certified by the Korea Laboratory Accreditation Scheme (KOLAS). Results: Chemicals (TVOC; Total Volatile Organic Compounds, Cl2: Chlorine, HF: Hydrogen fluoride and HCN: Hydrogen cyanide) were selected according to a priority logic (KOSHA Alert, acute poisoning statistics, literature review). Notifications were set according to OEL (occupational exposure limit). Sensors were selected based on OEL and the capabilities of the sensors. Communication is designed to use LTE (Long Term Evolution) and Wi-Fi at the same time for convenience. Electronic platform were applied to build this monitoring system. Conclusions: Real-time monitoring system for OEL of hazardous chemicals in workplace was developed. Smart sensor can detect chemicals to complement monitoring of traditional workplace environmental monitoring such as short term and peak exposure. Further research is needed to expand the scope of application, improve reliability, and systematically application.

Precessing of Smoked Dried and Powdered, Sardine for Instant Soup (정어리 분말수우프의 가공)

  • Oh, Kwang-Soo;Chung, Bu-Kil;Kim, Myung-Chan;Sung, Nak-Ju;Lee, Eung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 1988
  • This study was carried out to prepare the flavoring substance using sardine for instant soup, and to examine the taste compounds and storage stability of the product. In preparation of product, raw sardine are gutted, boiled for 10 minutes and smoked 3 times to $9{\sim}10%$ moisture content at $80^{\circ}C$ for 8 hours. The smoked-dried sardine meat were followed to be 50 mesh of particle size. The powdered-dried sardine were mixed 4.0% sugar, 20.0% table salt, 3.0% monosodium glutamate, 0.2% black pepper, 0.2% garlic powder and 0.2% onion powder, Finally the powdered instant soup product were vacuum packed in a laminated film(PET/A1 foil/CPP) bag, and then stored at room temperature for 120 days. The effect of smoking on enhancing flavor and on preventing lipid oxidation of product during storage were observed. From the chemical analysis and omission test, the principal taste compounds of product were IMP, 478.2mg/l00g; free amino acids such as glutamic acid, histidine, arginine, phenylalaine 3292.5mg/l00g; non-volatile organic acids such as lactic acid, ${\alpha}-ketoglutaric$ acid, 712.2mg/l00g; total creatinine 409.0mg/100g, and small amount of betaine, TMAO. Fatty acid composition of product were mainly consisted of polyenoic acids such as 20:5, 22:6, followed by saturated acids, monoenoic acid. The major fatty acid were 16:0, 16:1, 18:1, 20:5 and 22:6. From the results of sensory evaluation and chemical experiments during storage, the vacuum packed product were good condition for preserving the quality during storage for 120 days. We may conclude that the quality of present product was not inferior to that of seasoning powder of anchovy on the market, and it can be commercialized as a flavoring substance in preparing soup and broth.

  • PDF

Studies on the Growth Characteristics of Bifidobacteria, Organic Acids and n-hexanal Contents During the Fermentation of Enzyme Treated Soy Yogurt (효소처리 분리대두단백의 요구르트 발효 중 비피더스균의 생육특성 및 유기산과 n-hexanal 함량에 관한 연구)

  • 이숙영;이정은;박미정;권영실
    • Korean journal of food and cookery science
    • /
    • v.14 no.5
    • /
    • pp.589-596
    • /
    • 1998
  • This study was carried out to evaluate the quality attributes of soy yogurts prepared by different types of oligosaccharides (fructooligosaccharide, galactooligosaccharide , isomaltooligosaccharide) and Bifidobacteria (B. bifidum B. breve, B. infantis) containing enzyme treated soy protein isolate in terms of pH, titratable acidity, total number of viable cells of Bifidobacteria, ${\alpha}$-galactosidase activity, organic acids, volatile compounds. The pH values of soy yogurts fermented by B. bifidum showed the highest significantly but those fermented by B. infantis showed the lowest significantly, while the titratable acidity of soy yogurts were vice versa. The viable cells of Bifidobacteria of all soy yogurts showed more than 10$\^$9/ CFU/ml and soy yogurts fermented by B. infantis showing below pH 4.6 showed more than 10$\^$9/ CFU/ml after storage at 4$^{\circ}C$ for 7 days. The activity of ${\alpha}$-galactosidase showed the highest in the culture of B. infantis among the Bifidobacteria tested. Among the Bifidobacteria tested, the contents of lactic acid and acetic acid showed the highest in soy yogurts fermented by B. infantis but citric acid and propionic acid were the lowest. Among the Bifidobacteria tested, the contents of n-hexanal showed the highest in soy yogurts fermented by B. breve and a little amounts of acetaldehyde were present in all soy yogurts.

  • PDF