• Title/Summary/Keyword: Total Petroleum Hydrocarbon (TPH)

Search Result 80, Processing Time 0.027 seconds

Analysis of Total Petroleum Hydrocarbon in Domestic Distribution Petroleum (국내 유통 중인 석유제품 내 석유계 총 탄화수소화합물(TPH) 분석)

  • Lim, Young-Kwan;Kim, Jeong-Min;Kim, Jong-Ryeol;Kwon, Min-Jeong;Lee, Kyoung-Heum;Ryu, Seong-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.546-550
    • /
    • 2016
  • Over 60~70% of the domestic soil contamination have occurred by petroleum products. B T E X including benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbon (TPH) have to be inspected for the contaminated soil by petroleum products. An accurate contamination analysis is necessary to estimate the are of contaminated soil and also establish an appropriate purification scheme. In this study, we analyzed a sectional TPH pattern for current domestic distributed petroleum products. Also, the TPH content was analyzed by compensating the defect of current Korea standard analytic methods for soil where the analytic range is just for $C_8{\sim}C_{40}$. The light distillate petroleum products such as gasoline and solvent 1 showed the maximum of 85% difference in the TPH content between the standard analytic and improved methods.

Human Health Risk Assessment Strategy to Evaluate Non-carcinogenic Adverse Health Effect from Total Petroleum Hydrocarbon at POL-Contaminated Sites in Korea (국내 유류오염지역에서의 석유계총탄화수소에 의한 비발암 인체위해성평가 전략)

  • Park, In-Sun;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.10-22
    • /
    • 2011
  • Human health risk assessment for petroleum, oil and lubricant (POL) contaminated sites is challenging as total petroleum hydrocarbon (TPH) is not a single compound but rather a mixture of numerous substances. To address this concern, several TPH fractionation approaches have been proposed and used as an effective management tool for the POL-contaminated sites in many countries. In Korea, there are also recognized needs to establish a reliable and cost-effective human health risk assessment strategy based on the TPH fractionation method. In order to satisfy the social and institutional demand, this study suggested that the comprehensive risk assessment strategy based on a newly modified TPH fractionation method with 10 fractions, the Korean Standard Test Method (KSTM)-based analytical protocol and a stepwise risk assessment framework should be introduced into the domestic contaminated land management system. Under the proposed strategy, POL-contaminated sites can be effectively managed in terms of human health protection, and remedial cost and time can be determined reasonably. In addition, more researches required to increase our understanding of environmental risks and improve the domestic management system were proposed.

Analysis of Physical Properties and Total Petroleum Hydrocarbon for Soil Contamination (토양오염 해석을 위한 석유제품 물성 및 TPH 분석)

  • Lim, Young-Kwan;Jeong, Choong-Sub;Han, Kwan-Wook
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.618-623
    • /
    • 2012
  • The significance of soil environment has been gradually increased because of petroleum leak accidents. Comparing with wastewater clean treatments and air pollutant controls, the soil purification requires a long-term process and it is very expensive. In this study, we analyzed the physicochemical properties of total petroleum hydrocarbon (TPH) contaminated in soil. This could be applied to deciding the source of petroleum when a soil contamination accident occurs.

Combined TPH and BTEX Analytic Method to Identify Domestic Petroleum Products in Contaminated Soil (오염토양 내 석유제품 판별을 위한 TPH 및 BTEX 분석)

  • Lim, Young-Kwan;Na, Yong-Gyu;Kim, Jeong-Min;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.263-268
    • /
    • 2017
  • The significance of maintaining the soil environment is gradually increasing owing to soil and underground water contamination by petroleum leak accidents. However, the purification of soil is an expensive and more time-consuming process than the purification of contaminated water and air. Moreover, determining the source and people responsible for soil pollution gets often embroiled in legal conflicts, further delaying the cleanup process of the contaminate site. Generally, TPH (total petroleum hydrocarbon) pattern analysis is used to determine the petroleum species and polluter responsible for soil contamination. However, this process has limited application for petroleum products with a similar TPH pattern. In this study, we analyze the TPH pattern and specific sectional ratio (${\sim}C_{10}$, $C_{10}-C_{12}$, $C_{12}-C_{36}$, and $C_{36}{\sim}$) of various domestic petroleum products to identify the petroleum product responsible for soil contamination. Also, we perform BTEX (benzene, toluene, ethyl benzene, xylene) quantitative analysis and determine B:T:E:X ratio using GC-MS. The results show that gasoline grade 1 and 2 have a similar TPH pattern but different BTEX values and ratios. This means that BTEX analysis can be used as a new method to purify soil pollution. This complementary TPH and BTEX method proposed in this study can be used to identify the petroleum species and polluters present in the contaminated soil.

The Removal of Petroleum Hydrocarbon from Fine Soil in Soil Washing Water using Advanced Oxidation Processes

  • Jang, Gwan-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.362-367
    • /
    • 2014
  • This study was performed to test the applicability of the ozone/hydroxy radical reaction system, which applied advanced oxidation processes, to remove total petroleum hydrocarbon (TPH) from the fine soil in washing water of the soil washing process. Removal efficiency was tested on 40 L of washing water in a pilot reaction tank. Fine soil contaminated with $800mg\;kg^{-1}$ TPH was prepared at 5% and 10% suspended solids. Testing conditions included ozone/hydroxy radical flow rates of 40, 80, and $120L\;min^{-1}$, and processing time of 2 to 12 hours. The removal efficiency of petroleum hydrocarbon from water waster by ozone/hydroxy radical was increased with higher flow rates and lower percentages of suspended solids. Optimal efficiency was achieved at $80L\;min^{-1}$ flow rate for 4 hours for the 5% suspended solids, and $120L\;min^{-1}$ for 6 hours for the 10% suspended solids. These results verified the efficiency of hydroxy radical in removing TPH and the applicability of the ozone/hydroxy radical reaction system in the field.

Extraction of Total Petroleum Hydracabons from Petroleum Oil-Contaminated Sandy Soil by Soil Washing (토양 세척법에 의한 유류오염 사질토양의 TPH 추출 효율 평가)

  • Lee, Cha-Dol;Yoo, Jong-Chan;Yang, Jung-Seok;Kong, Jun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.18-24
    • /
    • 2013
  • The influences of various operating parameters on physico-chemical techniques were evaluated to remediate petroleum-contaminated sandy soil including S/L ratio, kinetic, and effect of soil particle size. The simple extraction using tap water removed only 20.6% of total petroleum hydrocarbon (TPH), and addition of NaOH enhanced the removal of TPH to approximately 30%. To meet the regulation levels, a surfactant, sodium dodecyl sulfate, was added, and the removal of TPH increased to 4 times. Probably, the carbonate minerals affected chemical aging and soprtion of petroleum, which inhibited the extraction of TPH. The soil with smaller particle size contained more TPH, and the removal of TPH was obstructed with smaller particle size. However, NaOH addition increased the removal of TPH in the smaller particles. The physico-chemical properties of soil influenced greatly the removal of petroleum even in sandy soil.

슬러지 식종에 따른 디젤연료에 오염된 토양내 n-alkane 및 isoprenoid의 변화

  • 이태호;박현철;최선열;박태주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.131-134
    • /
    • 2004
  • Several physical and chemical methods have been used for remediation contaminated by oils. However the cost was very high and secondary pollution rose during treating. The purpose of this study was to comprision TPH (total petroleum hydrocarbon) removal from artificially contaminated soil by diesel with and without seeding anaerobic digested sludge. After 120 days of overall at 35$^{\circ}C$, removal efficiency of TPH with seeding sludge was 2-3 times higher than blank. Also, the more amount seeding sludge, TPH removal efficiency and CH$_4$ content more obtained. It was sad that seeding of anaerobic digested sludge was a good method for enhancing TPH removal efficiency without increasing operating cost. Sulfate, nitrate-reducing, methanogenic condition were evaluated for alkane, isoprenoid as target contaminated soil.

  • PDF

Treatment of Contaminated Groundwater Containing Petroleum and Suspended Solids Using DAF and Mixed Coagulation Processes (DAF와 혼화응집공정을 이용한 현탁성 고형물 함유 유류 오염 지하수 처리)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.25-32
    • /
    • 2010
  • Contamination of soil and groundwater by the compounds of hydrocarbon petroleum has been widely accepted as the main cause that harms the environments and health. To remove those pollutants, absorbing clothes, activated carbons, or oil-water separation devices with the gravity method are employed for treatment. However, those materials and devices cannot remove the emulsion pollutants despite of their efficiency for removing free products. Therefore, we investigated the problems which occur during the groundwater treatment for the highly concentrated suspended solid particles, which can be resulted from excavation, and to propose methods to remove TPH(Total Petroleum Hydrocarbon). After coagulation experiment with high molecular polymers, the concentration of SS(Suspended Solids) and COD(Chemical Oxygen Demand) turned to satisfy the groundwater quality criteria within 5 minutes while the concentration of TPH failed to meet the water quality standard of effluent. Consequently, the water quality criteria for effluent could not be met by single DAF(Dissolved Air Flotation) process. However all water quality criteria could be satisfied after 20 minutes when coagulation reactions are carried out simultaneously in the DAF reactor.

Effects of Diesel Dose and Soil Texture on Variation in the Concentration of Total Petroleum Hydrocarbon in the Diesel-Contaminated Soil (경유 주입량과 토양 조성에 따른 유류 오염토양 내 TPH 측정 농도 변화 연구)

  • Jeong, Jongshin;Kim, Hakyong;Lee, Sojin;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.69-72
    • /
    • 2015
  • This study investigated the effects of oil dose and soil texture on the analysis results for total petroleum hydrocarbon (TPH) in artificially oil-contaminated soils. The same amount of diesel was mixed with soils having different soil texture, and soil TPH concentrations were then analyzed for comparison. Presence of clay in the soil showed lower soil TPH analysis results than that of sand only. As the clay content was increased in the soil, the lower soil TPH concentration was obtained by incompleteness of solvent extraction. As the organic matter content in soil was increased from 5.2% to 10% (weight basis), a higher concentration of TPH was obtained by TPH analysis. However, at a higher organic content in the soil, 18%, resulted in a lower TPH concentration than those of 5.2% and 10%. Gasoline dose to the soil resulted in a significantly low TPH concentration due to the volatilization of gasoline while soil mixing and analysis. This study results would provide fundamental information either to the expectation of TPH concentration in artificially oil-contaminated soil or to estimation of oil release in the real oil-contaminated site.

Effects of Solids Content and Mixing Speed in Treatment of Petroleum Hydrocarbon Contaminated Soils using a Bioreactor (고형물함량 및 혼합강도가 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 미치는 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 1997
  • The purpose of this study was to evaluate effects of solids content and mixing speed in treatment of petroleum hydrocarbon contaminated soils using a slurry-phase bioreactor. Performance results on slurry-phase bioremediation of diesel fuel contaminated soil were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) was evaluated in combination with biological treatment. Abiotic and biotic fate of the TPH were determined using soil not previously exposed to compounds in diesel fuel. The reactor volume for given throughput can be reduced by maximizing the solids content. Applications of 50% and 20% solids content(dry weight basis) were showed a little difference(57.5% : 61.6%) in biological TPH removal rate each other. Mixing and particle suspension are critical to desorption and biological degradation. In this standpoint, this study was performed using two mixing speed. When the reactor was operated at 70rpm, it had a better result in the particle suspension and TPH removal rate than the reactor with mixer rotated at 20rpm. In the reactor applied 20rpm, it was resulted in failure of particle suspension.

  • PDF