• Title/Summary/Keyword: Total Nitrogen

Search Result 4,814, Processing Time 0.037 seconds

EFFICIENCY OF ENERGY TRANSFER BY A POPULATION OF THE FARMED PACIFIC OYSTER, CRASSOSTREA GIGAS IN GEOJE-HANSAN BAY (거제${\cdot}$한산만 양식굴 Crassostrea gigas의 에너지 전환 효율)

  • KIM Yong Sool
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.179-183
    • /
    • 1980
  • The efficiency of energy transfer by a population of the farmed pacific oyster, Crassostrea gigas was studied during culture period of 10 months July 1979-April 1980, in Geoje-Hansan Bay near Chungmu City. Energy use by the farmed oyster population was calculated from estimates of half-a-month unit age specific natural mortality rate and data on growth, gonad output, shell organic matter production and respiration. Total mortality during the culture period was estimated approximate $36\%$ from data on survivor individual number per cluster. Growth may be dual consisted of a curved line during the first half culture period (July-November) and a linear line in the later half period (December-April). The first half growth was approximated by the von Bertalanffy growth model; shell height, $SH=6.33\;(1-e^{0.2421(t+0.54)})$, where t is age in half-a-month unit. In the later half growth period shell height was related to t by SH=4.44+0.14t. Dry meat weight (DW) was related to shell height by log $DW=-2.2907+2.589{\cdot}log\;SH,\;(2, and/or log $DW=-5.8153+7.208{\cdot}log\;SH,\;(5. Size specific gonad output (G) as calculated by condition index of before and after the spawning season, was related to shell height by $G=0.0145+(3.95\times10^{-3}{\times}SH^{2.9861})$. Shell organic matter production (SO) was related to shell height by log $SO=-3.1884+2.527{\cdot}1og\;SH$. Size and temperature specific respiration rate (R) as determined in biotron system with controlled temperature, was related to dry meat weight and temperature (T) by log $R=(0.386T-0.5381)+(0.6409-0.0083T){\cdot}log\;DW$. The energy used in metabolism was calculated from size, temperature specific respiration and data on body composition. The calorie contents of oyster meat were estimated by bomb calorimetry based on nitrogen correction. The assimilation efficiency of the oyster estimated directly by a insoluble crude silicate method gave $55.5\%$. From the information presently available by other workers, the assimilation efficiency ranges between $40\%\;and\;70\%$. Twenty seven point four percent of the filtered food material expressed by energy value for oyster population was estimated to have been rejected as pseudofaeces : $17.2\%$ was passed as faeces; $35.04\%$ was respired and lost as heat; $0.38\%$ was bounded up in shell organics; $2.74\%$ was released as gonad output, $2.06\%$ was fell as meat reducing by mortality. The remaining $15.28\%$ was used as meat production. The net efficiency of energy transfer from assimilation to meat production (yield/assimilation) of a farm population of the oyster was estimated to be $28\%$ during culture period July 1979-April 1980. The gross efficiency of energy transfer from ingestion to meat production (yield/food filtered) is probably between $11\%\;and\;20\%$.

  • PDF

Effects of Varying the Concentration of Energy Yielding Nutrients on Nitrogen Balance and Body Composition of the Growing Rats (열량 영앙소의 수준이 흰쥐의 단백질 평형과 체조성에 미치는 영향)

  • Chang, Y.K.;Han, I.K.
    • Journal of Nutrition and Health
    • /
    • v.13 no.3
    • /
    • pp.117-125
    • /
    • 1980
  • In order to investigate the utilization efficiency of dietary protein in the rat body and effects of dietary fat on its protein metabolism, 51 Sprague-Dawly rats of 6 weeks old weighing approximate)y 106g were subjected to feeding trials for 4 weeks and then subsequently to metabolic trials for 3 weeks using six different diets composed of three different levels of protein (10%, 20% and 30%) with low (20%) and high (40%) fat content for each protein level, total energy being fixed at 4000 Kcal/kg by addition of an appropriate amount of carbohydrate, and the following results were obtained. 1) The body weight gain increased in the low fat diets with increasing protein level whereas it decreased in the high fat diets. Food efficiency also increased in the low fat diets with increasing protein level, but no do deffinitive trend was observed in the high fat diets. The protein efficiency was generally higher at low protein level and tended to decrease as the protein level increased, regardless of the amount of fat intake. 2) As the protein level was increasing, digestibility of dry matters and carbohydrate were decreasing whereas that of protein was slightly increasing. On the other hand, digestibility of fat was always very high regardless of the amounts of dietary protein and fat. 3) The gross energy intake was affected both by protein and fat contents in the diets: The energy metabolism efficiency was decreasing with increasing protein level and at the same protein level the energy utilization was considerably higher in the low fat diets than in the high fat. 4) From the above-mentioned experimental results it may be concluded that the best formula of diet for growing rats is probably composed of 20% protein, 20% fat and 60% carbohydrate.

  • PDF

Livestock Manure Nutrients Flow Analysis of Integrated Crop-Livestock Farming Model Reflecting the Regional Characteristics (지역특성을 고려한 경축순환농업 모형의 가축분뇨 양분 흐름분석)

  • Lee, Joon Hee;Choi, Hong Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.36-46
    • /
    • 2015
  • Integration of crop-livestock farming has been a problem-solving mode for abatement of environmental pollution and recovery of resources in recent years. The objectives of this study were 1) to suggest the customized integration of crop-livestock farming model reflecting the regional characteristics through in-depth analysis of case study and 2) to analyze the livestock nutrients flow in terms of three primary elements as nitrogen(N), phosphorous(P), and potassium(K). The personal interview and survey were carried out in 2012 for a total of 161 farms from four different regions(NS, NW, JJ, YC) in South Korea. The mass balance analysis was used to suggest and evaluate the models for two sites(JJ and YC). The results showed that NS and NW sites produced relatively more livestock manure than the sites of YC and JJ because of the regional differences in livestock numbers and urbanization. The models were suggested for the site JJ and site YC, and 'two track model(energy and resource recovery)' and 'dispersal type model' were assigned respectively. For the nutrient flows, the releasing P and K with new models had increased up to 7%, while N release had decreased down to 15% in both YC and JJ sites compared to the present treatment system. Estimated value showed that there was oversupply of N (719 ton/yr) and $P_2O_5$ (1,269 ton/yr) in YC and deficiency of N (671 ton/yr) and excessive $P_2O_5$ (32 ton/yr) in JJ respectively. Therefore, P runoff has to be considered an eutrophication occurs in rural small stream when an integration of crop-livestock farm system is applied into both sites.

Nitrification at Low Concentration of NH4+-N by using Attached Growth in Zeolite Media (제올라이트 여재의 부착성장을 이용한 저농도 NH4+-N의 생물학적 질산화 처리)

  • Kim, Jin-Su;Kang, Min-Koo;Yang, Chang-Hwan;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.561-567
    • /
    • 2017
  • This study focused on estimating the low concentration of $NH_4{^+}-N$ removal by using simultaneous reaction of the adsorption and microbial nitrification with microbe-attached zeolite media. To evaluate the adsorption effect of the zeolite media, the expanded polypropylene (EPP) media which are not able to adsorb $NH_4{^+}-N$ were used as a control media in order to compare the adsorption ability. Each media was used to experiment after aerated 8 hr for attachment of the microbes. The batch experiment shows that nitrification occurred in zeolite media better than EPP media because nitrifiers could consume the relatively enough amount of $NH_4{^+}-N$ adsorbed onto the zeolite media. Compared to the reactor with EPP media, nitrification occurred only in the reactor with zeolite media under continuous operation at the empty bed contact time (EBCT) of 25 min and 3 mg/L of $NH_4{^+}-N$ concentration. As the EBCT of the reactor with zeolite media increased from 10 to 60 min, the nitrification efficiencies increased too. $NH_4{^+}-N$ removal efficiency showed up more than 90% at EBCT 60 min. And the difference in concentration of the total nitrogen between the influent and the effluent was 0.25 mg/L at EBCT 10 min, 0.78 mg/L at EBCT 25 min, 0.59 mg/L at EBCT 40 min and 0.37 mg/L at EBCT 60 min, respectively. This difference was due to between adsorption rate and nitrification rate of $NH_4{^+}-N$, and it was considered that $NH_4{^+}-N$ was adsorbed on the zeolite media by the gap of the concentration.

Rice Bran and Charcoal Meal Application on Rice Growth and Bacterial Population in Paddy Soil (쌀겨 및 목탄 시용이 벼 생육과 토양세균의 밀도에 미치는 영향)

  • Lee, Sang-Bok;Yoo, Chul-Hyun;Kim, Jong-Goo;Kim, Jai-Duk;Lee, Deog-Bae;Lee, Kyeong-Bo;Han, Sang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.178-184
    • /
    • 2001
  • A study was carried out to investigate the effect of rice bran and charcoal meal application on growth in rice and bacterial population in paddy soil. Four different treatments were applied ; at whole layer placement of rice bran 1.8Mg/ha(1.8WR), surface of rice bran 1.8Mg/ha(1.8SR), charcoal meal 3.0Mg/ha(3.00M), and combined rice bran 1.8Mg/ha and charcoal meal 3.0Mg/ha (1.8R+3.0C) through field experiment. $NH_4-N$ and $NO_3-N$ in soil were high in the application of 1.8SR and 1.8R+3.0C until heading stage after rice bran application. Amount of nitrogen absorbed by rice plant were the highest in application of 1.8R+3.0C, and the lowest in application of 3.0CM. Rice yield was no differences among treatments. A number of total aerobic bacteria were the highest in application of 1.8R+3.0C at panicle formation stage of rice. Cellulose decomposers were high in application of 1.8SR at tillering stage and in application of 1.8R+3.0C at harvesting stage. The microorganisms of ammonia-oxidizing and denitrifying bacteria showed higher number in the application of 1.8R+3.0C and 1.8SR at tillering stage than heading stage. Azotobacter had tendency to decreased with the passage of time, but increased when rice bran was added. Athiorhodacea were numerous in the application of 1.8WR, but a few in the application of 3.0CM through growing period of rice plant.

  • PDF

Effect of Compost Application on Yield and Chemical Components of Chinese Cabbage(Brassica pekinensis Rupr.) and Changes of Soil Physico-chemical Properties in Organic Farming (유기농산물 생산을 위한 퇴비시용이 배추의 수량과 무기성분 및 토양의 이화학성에 미치는 영향)

  • Lee, Joo-Sam;Chang, Ki-Woon;Cho, Sung-Hyun;Kim, Chong-Yun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.365-370
    • /
    • 1996
  • To get the basic data for organic farming, the Chinese cabbage(Brassica pekinensis Rupr.) was cultivated in field of sandy loam soil and compost was applied at the ratios of 0, 20, 40, 80, 120ton per ha, respectively, with N-P-K elements. The yield of Chinese cabbage was maximum in the plot of compost 40t/ha application and it's weight was 3,783g/head. The chemical components of Chinese cabbage were no remarkable changes with the increasing amount of compost application. Content of organic matter in soil after experiment was finished was 39g/kg, total nitrogen was 2.2g/kg, available phosphorus was 1,927mg /kg. CEC was $11.4cmol^+/kg$, exchangable cations were K:0.5. Ca:0.6. Mg:0.3 and $Na:0.2cmol^+/kg$ in treatment of compost 120 t/ha.

  • PDF

Physicochemical Changes of Food Waste Slurry Co-fermented with Pig Manure Slurry (음식물쓰레기와 돈분 액상물의 혼합부숙시 이화학적 특성 변화)

  • So, Kyu-Ho;Seong, Ki-Seog;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • To find a feasibility of utilization of food waste slurry (FWS) generated during composting, FWS was combined with pig manure slurry (PMS) in various ratios and the change of nutrient contents and offensive odor of the combined slurries before and after fermentation were studied. The initial pH was 7.67 for PMS and 8.45 for FWS. However, during the fermentation, pH increased in the combined slurries with the higher FWS rate among the treatments while decreased in thosewith higher PMS rate. EC of each slurry sample showed that the difference among combined slurry samples has been reduced during fermentation and became stabilized in $21{\sim}23dS\;m^{-1}$ after 180 days. After 180 days fermentation, total nitrogen (T-N) decreased. T-N of mixture with a half and more FWS decreased up to 0.1%, less than the critical level (0.3%). The contents of O.M., T-N, phosphorus, calcium and magnesium decreased with fermentation while those of potash and salinity increased. From initial fermentation until 30 days, a lot of $NH_3$, as an offensive odor, was produced. However, it decreased steadily, except in higher PMS rate. In terms of producing $50{\mu}g\;ml^{-1}$ of $NH_3$, the top layer took 30 days after fertilization with FWS only, 45 days for utilized treatment with F75 (25 % of PMS), 75 days for utilized with F50 (50%) and F25 (75%) and 90 days for PMS only, respectively. $RNH_2$ also had similar trend with $NH_3$ but it was produced continuously as long fermentation proceeded. In terms of $RNH_2$, the decrease in concentration up to $50{\mu}g\;ml^{-1}$ were; 45 days for FWS only(F100), 105 days for F75 utilization, 120 daysfor F50, 165 days for F25, respectively. ethyl mercaptan was produced in PMS until 180 days after fertilization but it was not produced in FWS. Sensory tests as an integrated test of offensive odor were also done. FWS showed lower than 1 after 30 days from initial fermentation, while PMS had still offensive odor even up to 180 days from initial fermentation. It is probably affected by the continuous production of ethyl mercaptan and amines. However, considering in decrease T-N content caused by volatilization while offensive odor intensity according to official standard of fertilizer is lower than 2. Further study on controlling offensive odor needs to be done.

Quality and Storage Characteristics of Low Salted Onion and Five Cereals-Doenjang (저염 양파 오곡된장의 품질 및 저장 특성)

  • Shin, A-Ga;Lee, Ye-Kyung;Jung, Yoo-Kyung;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.15 no.2
    • /
    • pp.174-184
    • /
    • 2008
  • The quality and storage characteristics of low salted onion and five cereals-doenjang (DFO) were investigated. At the DFO, soybean koji ($57{\sim}62%$), onion (3%) and salt (8%) were mixed with equal amount of rice, barley, glutinous millet and glutinous indian millet ($10{\sim}30%$), and water ($7{\sim}12%$). The storage of DFO was done by vacuum packing in polypropylene tube, and sterilized at $121^{\circ}C$. The fermentation and storage was conducted for 60 days at $25^{\circ}C$ at each condition. Control doenjang (GD) was the salinity of 16% soybean doenjang that was not sterilized and packed in plastic containers for storage. During the fermentation, pH of DFO was lower than GD. The pH maintained stability during the storage, and revealed to be lowered, as the proportion of mixed cereals was higher. During the fermentation of DFO, the brix degree revealed to be higher than GD and maintained s1ability during the storage. During the fermentation and storage, the amino nitrogen content of DFO was ranged $400{\sim}470mg%$ by showing higher content than GD and maintained stable content during the storage. During the fermentation, the activities of protease and ${\beta}$-amylase were maintained to be high at DFO, but the activities during the storage were high at GD. The color $L^*$ value of DFO during fermentation and storage maintained higher values than GD, but $a^*$ value revealed lower pattern. Total free amino acids of DFO was ranged $1,918{\sim}2,290mg%$ which was higher than GD that recorded 1,291 mg%. When the sensory evaluation was conducted for DFO that was fermented and stored for 60 days, the DFO mixed with $20{\sim}30%$ of cereals resulted to have more savory taste, flavor, and sweeter than GD, and overall acceptability for color and overall taste was high.

The Chracterization of Critical Ranges of Soil Physico-chemical Properties of Ginseng Field and Nutrient Contents of Ginseng Leaves in Gyeonggi Province (경기지역 인삼재배지의 토양 및 엽중 적정양분함량 검정)

  • Jin, Hyun-O;Kwon, Hyuck-Bum;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.642-649
    • /
    • 2011
  • Ginseng growth is largely affected by characteristics of soil in Ginseng field. In this study, we determined the critical ranges of physico-chemical properties of soil for optimization of ginseng growth by analyzing the soils from Anseong and Pocheon regions in Gyeonggi province. Fresh weight of ginseng was 2 to 5 fold higher in good growth field compared to poor growth field within Anseong region. In the case of Pocheon region, 1.5 to 2 fold differences of fresh weight of ginseng was observed between good and poor growth field. These results indicate the difference of ginseng growth even in the same region. Based on these results, critical ranges of physico-chemical properties of soils were determined by comparing the good and poor growth field of each regions, which are follows; more than 50% of soil porosity, 2.0~2.8 g/kg of total nitrogen, 500~900 mg/kg for Av. $P_2O_5$, 2.3~3.5 $cmol_c\;kg^{-1}$ for Exch. Ca in Anseong; less than 13% of liquid phase, 400~650 mg/kg for Av. $P_2O_5$, 4.0~4.7 $cmol_c\;kg^{-1}$ for Exch. Ca, less than 0.8 and 0.5 $cmol_c\;kg^{-1}$ for Exch. Mg and K, respectively, in Pocheon. Interestingly, we found that ginseng growth was affected by exchangeable base ratio (Ca:Mg:K) especially in Anseong region, which were 6:2:1 in good growth field while 4:2:1 in poor growth field. Critical ranges for nutrient contents of ginseng leaves were also characterized, which are less than 0.2% and 0.22% of each P and Mg, respectively, in Anseong, while less than 1.8% and 0.18% of each N and P, respecively, and 1.5~3.0% of K in Pocheon. In addition, we determined critical ranges for inorganic nutrient contents in the current study.

Elimination and Utilization of Pollutants - Part I Microbiological Clarification of Industrial Waste and Its Utilization as Feed Resources - (환경오염원(環境汚染源)의 제거(除去)와 그 이용성(利用性)에 관(關)한 연구(硏究) - 제(報I)1보(第). 미생물(微生物)에 의(依)한 산업폐수(産業廢水)의 정화(淨化) 및 사료자원개발(飼料資源開發)에 개(開)하여 -)

  • Lee, Ke-Ho;Lee, Kang-Heup;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 1980
  • Industrial wastes from pulp and food plants were treated with microorganisms to clarify organic waste-water and to produce cells as animal feed, and results were summarized as follows. (1) Waste-water from pulp, beer, bread yeast, and ethanol distillation plants contained $1.4{\sim}1.5%$ of total sugar, $0.25{\sim}0.35%$ nitrogen, and biological oxygen demand (BOD) was $400{\sim}25,000$, chemical oxygen demand (COD), $500{\sim}28,000$, and pH, $3.8{\sim}7.0$. The BOD and COD were highest in waste-water from ethanol distillation plants among others. (2) Bacterial and yeast counts were $4{\times}10^4-1{\times}10^9,\;2{\times}10^2-7{\times}10^4/ml$ in waste-water. (3) Bacteria grew better in pulp waste and yeasts in beer, bread yeast, and ethanol distillation waste. (4) Saccharomyces cerevisiae SAFM 1008 and Candida curvata SAFM 70 were the most suitable microorganisms for clarification of ethanol distillation waste. (5) When liquid and solid waste from ethanol distillation were treated with microbial cellulase, xylanase, and pectinase, solid waste was reduced by 36%, soluble waste was increased, and recuding sugar content was increased by 1.3 times which provided better medium than untreated waste for cultivation of yeasts. (6) Optimum growth conditions of the two species of yeast in ethanol distillation waste were pH 5.0, $30^{\circ}C$, and addition of 0.2% of urea, 0.1% of $KH_2PO_4$ and 0.02% of $MgSO_4$. (7) Minimum number of yeast for proper propagation was $1.8{\times}10^5/ml$. (8) C. curvata70 was better than cerevisae for the production of yeast cells from ethanol distillation waste treated with microbial enzymes. (9) S. cerevisiae produced 16 g of dried cell per 1,000ml of ethanol distillation waste and reduced BOD by 46%. C. curvata produced 17.6g of dried cell and reduced BOD by 52% at the same condition. (10) Yeast cells produced from the ethanol distillation waste contained 46-52% protein indicating suitability as a protein source for animal feed.

  • PDF