• Title/Summary/Keyword: Total K/S

Search Result 21,183, Processing Time 0.049 seconds

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (III) -Genetic Variation of the Progeny Originated from Mt. Chu-wang, An-Myon Island and Mt. O-Dae Populations- (소나무 천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(III) -주왕산(周王山), 안면도(安眠島), 오대산(五臺山) 소나무집단(集團)의 차대(次代)의 유전변이(遺傳變異)-)

  • Yim, Kyong Bin;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.36-63
    • /
    • 1976
  • The purpose of this study is to elucidate the genetic variation of the natural forest of Pinus densiflora. Three natural populations of the species, which are considered to be superior quality phenotypically, were selected. The locations and conditions of the populations are shown in table 1 and 2. The morphological traits of tree and needle and some other characteristics were presented already in our first report of this series in which population and family differences according to observed characteristics were statistically analyzed. Twenty trees were sampled from each populations, i.e., 60 trees in total. During the autumn of 1974, matured cones were collected from each tree and open-pollinated seeds were extracted in laboratory. Immediately after cone collection, in closed condition, the morphological characteristics were measured. Seed and seed-wing dimensions were also studied. In the spring of 1975, the seeds were sown in the experimental tree nursery located in Suweon. And in the April of 1976, the 1-0 seedlings were transplanted according to the predetermined experimental design, randomized block design with three replications. Because of cone setting condition. the number of family from which progenies were raised by populations were not equal. The numbers of family were 20 in population 1. 18 in population 2 and 15 in population 3. Then, each randomized block contained seedlings of 53 families from 3 populations. The present paper is mainly concerned with the variation of some characteristics of cone, seed, needle, growth performance of seedlings, and chlorophyll and monoterpene compositions of needles. The results obtained are summerized as follows. 1. The meteorological data obtained by averaging the records of 30 year period, observed from the nearest station to each location of populations, are shown in Fig. 3, 4, and 5. The distributional pattern of monthly precipitation are quite similar among locations. However, the precipitation density on population 2, Seosan area, during growing season is lower as compared to the other two populations. Population 1. Cheong-song area, and population 3, Pyong-chang area, are located in inland, but population 2 in the western seacoast. The differences on the average monthly air temperatures and the average monthly lowest temperatures among populations can hardly be found. 2. Available information on the each mother trees (families) studied, such as age, stem height, diameter at breast height, clear-bole-length, crown conditions and others are shown in table 6,7, and 8. 3. The measurements of fresh cone weight, length and the widest diameter of cone are given in Tab]e 9. All these traits arc concerned with the highly significant population differences and family differences within population. And the population difference was also found in the cone-index, that is, length-diameter ratio. 4. Seed-wing length and seed-wing width showed the population differences, and the family differences were also found in both characteristics. Not discussed in this paper, however, seed-wing colours and their shapes indicate the specificity which is inherent to individual trees as shown in photo 3 on page 50. The colour and shape are fully the expression of genetic make up of mother tree. The little variations on these traits are resulted from this reason. The significant differences among populations and among families were found in those characteristics, such as 1000-seed weight, seed length, seed width, and seed thickness as shown in table 11. As to all these dimensions, the values arc always larger in population 1 which is younger in age than that of the other two. The population differences evaluated by cone, seed and seed-wing sizes could partly be attributed to the growth vigorousity. 5. The values of correlation between the characteristics of cone and seed are presented in table 12. As shown, the positive correlations between cone diameter and seed-wing width were calculated in all populations studied. The correlation between seed-wing length and seed length was significantly positive in population 1 and 3 but not in population 2, that is, the r-value is so small as 0.002. in the latter. The correlation between cone length and seed-wing length was highly significant in population 1, but not in population 2. 6. Differences among progenies in growth performances, such as 1-0 and 1-1 seedling height and root collar diameter were highly singificant among populations as well as families within population(Table 13.) 7. The heritability values in narrow sense of population characteristics were estimated on the basis of variance components. The values based on seedling height at each age stage of 1-1 and 1-0 ranged from 0.146 to 0.288 and the values of root collar diameter from 0.060 to 0.130. (Table 14). These heritability values varied according to characteristics and seedling ages. Here what must be stated is that, for calculation of heritability values, the variance values of population was divided by the variance value of environment (error) and family and population. The present authors want to add the heritability values based on family level in the coming report. It might be considered that if the tree age is increased in furture, the heritability value is supposed to be altered or lowered. Examining the heritability values studied previously by many authors, in pine group at age of 7 to 15, the values of height growth ranged from 0.2 to 0.4 in general. The values we obtained are further below than these. 8. The correlation between seedling growth and seed characteristics were examined and the values resulted are shown in table 16. Contrary to our hypothetical premise of positive correlation between 1-0 seedling height and seed weight, non-significance on it was found. However, 1-0 seedling height correlated positively with seed length. And significant correlations between 1-0 and 1-1 seedling height are calculated. 9. The numbers of stomata row calculated separately by abaxial and adaxial side showed highly significant differences among populations, but not in serration density. On serration density, the differences among families within population were highly significant. (Table 17) A fact must be noted is that the correlation between stomata row on abaxial side and adaxial side was highly significant in all populations. Non-significances of correlation coefficient between progenies and parents regarding to stomata row on abaxial side were shown in all populations studied.(Table 18). 10. The contents of chhlorophyll b of the needle were a little more than that of chlorophyll a irrespective of the populations examined. The differences of chlorophyll a, b and a plus b contents were highly significant but not among families within populations as shown in table 20. The contents of chlorophyll a and b are presented by individual trees of each populations in table 21. 11. The occurrence of monoterpene components was examined by gas liquid chromatography (Shimazu, GC-1C type) to evaluate the population difference. There are some papers reporting the chemical geography of pines basing upon monoterpene composition. The number of populations studied here is not enough to state this problem. The kinds of monoterpene observed in needle were ${\alpha}$-pinene, camphene, ${\beta}$-pinene, myrcene, limonene, ${\beta}$-phellandrene and terpinolene plus two unknowns. In analysis of monoterpene composition, the number of sample trees varied with population, I.e., 18 families for population 1, 15 for population 2 and 11 for population3. (Table 22, 23 and 24). The histograms(Fig. 6) of 7 components of monoterpene by population show noticeably higher percentages of ${\alpha}$-pinene irrespective of population and ${\beta}$-phellandrene in the next order. The minor Pinus densiflora monoterpene composition of camphene, myrcene, limonene and terpinolene made up less than 10 percent of the portion in general. The average coefficients of variation of ${\alpha}$-pinene and ${\beta}$-phellandrene were 11 percent. On the contrary to this, the average coefficients of variation of camphene, limonene and terpinolene varied from 20 to 30 percent. And the significant differences between populaiton were observed only in myrcene and ${\beta}$-phellandrene. (Table 25).

  • PDF

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF

A Study on Forest Insurance (산림보험(山林保險)에 관한 연구(硏究))

  • Park, Tai Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.15 no.1
    • /
    • pp.1-38
    • /
    • 1972
  • 1. Objective of the Study The objective of the study was to make fundamental suggestions for drawing a forest insurance system applicable in Korea by investigating forest insurance systems undertaken in foreign countries, analyzing the forest hazards occurred in entire forests of Korea in the past, and hearing the opinions of people engaged in forestry. 2. Methods of the Study First, reference studies on insurance at large as well as on forest insurance were intensively made to draw the characteristics of forest insurance practiced in main forestry countries, Second, the investigations of forest hazards in Korea for the past ten years were made with the help of the Office of Forestry. Third, the questionnaires concerning forest insurance were prepared and delivered at random to 533 personnel who are working at different administrative offices of forestry, forest stations, forest cooperatives, colleges and universities, research institutes, and fire insurance companies. Fourth, fifty three representative forest owners in the area of three forest types (coniferous, hardwood, and mixed forest), a representative region in Kyonggi Province out of fourteen collective forest development programs in Korea, were directly interviewed with the writer. 3. Results of the Study The rate of response to the questionnaire was 74.40% as shown in the table 3, and the results of the questionaire were as follows: (% in the parenthes shows the rates of response; shortages in amount to 100% were due to the facts of excluding the rates of response of minor respondents). 1) Necessity of forest insurance The respondents expressed their opinions that forest insurance must be undertaken to assure forest financing (5.65%); for receiving the reimbursement of replanting costs in case of damages done (35.87%); and to protect silvicultural investments (46.74%). 2) Law of forest insurance Few respondents showed their views in favor of applying the general insurance regulations to forest insurance practice (9.35%), but the majority of respondents were in favor of passing a special forest insurance law in the light of forest characteristics (88.26%). 3) Sorts of institutes to undertake forest insurance A few respondents believed that insurance companies at large could take care of forest insurance (17.42%); forest owner's mutual associations would manage the forest insurance more effectively (23.53%); but the more than half of the respondents were in favor of establishing public or national forest insurance institutes (56.18%). 4) Kinds of risks to be undertaken in forest insurance It would be desirable that the risks to be undertaken in forest insurance be limited: To forest fire hazards only (23.38%); to forest fire hazards plus damages made by weather (14.32%); to forest fire hazards, weather damages, and insect damages (60.68%). 5) Objectives to be insured It was responded that the objectives to be included in forest insurance should be limited: (1) To artificial coniferous forest only (13.47%); (2) to both coniferous and broad-leaved artificial forests (23.74%); (3) but the more than half of the respondents showed their desire that all the forests regardless of species and the methods of establishment should be insured (61.64%). 6) Range of risks in age of trees to be included in forest insurance The opinions of the respondents showed that it might be enough to insure the trees less than ten years of age (15.23%); but it would be more desirous of taking up forest trees under twenty years of age (32.95%); nevertheless, a large number of respondents were in favor of underwriting all the forest trees less than fourty years of age (46.37%). 7) Term of a forest insurance contract Quite a few respondents favored a contract made on one year basis (31.74%), but the more than half of the respondents favored the contract made on five year bases (58.68%). 8) Limitation in a forest insurance contract The respondents indicated that it would be desirable in a forest insurance contract to exclude forests less than five hectars (20.78%), but more than half of the respondents expressed their opinions that forests above a minimum volume or number of trees per unit area should be included in a forest insurance contract regardless of the area of forest lands (63.77%). 9) Methods of contract Some responded that it would be good to let the forest owners choose their forests in making a forest insurance contract (32.13%); others inclined to think that it would be desirable to include all the forests that owners hold whenerver they decide to make a forest insurance contract (33.48%); the rest responded in favor of forcing the owners to buy insurance policy if they own the forests that were established with subsidy or own highly vauable growing stock (31.92%) 10) Rate of premium The responses were divided into three categories: (1) The rate of primium is to be decided according to the regional degree of risks(27.72%); (2) to be decided by taking consideration both regional degree of risks and insurable values(31.59%); (3) and to be decided according to the rate of risks for the entire country and the insurable values (39.55%). 11) Payment of Premium Although a few respondents wished to make a payment of premium at once for a short term forest insurance contract, and an annual payment for a long term contract (13.80%); the majority of the respondents wished to pay the premium annually regardless of the term of contract, by employing a high rate of premium on a short term contract, but a low rate on a long term contract (83.71%). 12) Institutes in charge of forest insurance business A few respondents showed their desire that forest insurance be taken care of at the government forest administrative offices (18.75%); others at insurance companies (35.76%); but the rest, the largest number of the respondents, favored forest associations in the county. They also wanted to pay a certain rate of premium to the forest associations that issue the insurance (44.22%). 13) Limitation on indemnity for damages done In limitation on indemnity for damages done, the respondents showed a quite different views. Some desired compesation to cover replanting costs when young stands suffered damages and to be paid at the rate of eighty percent to the losses received when matured timber stands suffered damages(29.70%); others desired to receive compensation of the actual total loss valued at present market prices (31.07%); but the rest responded in favor of compensation at the present value figured out by applying a certain rate of prolongation factors to the establishment costs(36.99%). 14) Raising of funds for forest insurance A few respondents hoped to raise the fund for forest insurance by setting aside certain amount of money from the indemnity paid (15.65%); others wished to raise the fund by levying new forest land taxes(33.79%); but the rest expressed their hope to raise the fund by reserving certain amount of money from the surplus money that was saved due to the non-risks (44.81%). 15) Causes of fires The main causes of forest fires 6gured out by the respondents experience turned out to be (1) an accidental fire, (2) cigarettes, (3) shifting cultivation. The reponses were coincided with the forest fire analysis made by the Office of Forestry. 16) Fire prevention The respondents suggested that the most important and practical three kinds of forest fire prevention measures would be (1) providing a fire-break, (2) keeping passers-by out during the drought seasons, (3) enlightenment through mass communication systems. 4. Suggestions The writer wishes to present some suggestions that seemed helpful in drawing up a forest insurance system by reviewing the findings in the questionaire analysis and the results of investigations on forest insurance undertaken in foreign countries. 1) A forest insurance system designed to compensate the loss figured out on the basis of replanting cost when young forest stands suffered damages, and to strengthen credit rating by relieving of risks of damages, must be put in practice as soon as possible with the enactment of a specifically drawn forest insurance law. And the committee of forest insurance should be organized to make a full study of forest insurance system. 2) Two kinds of forest insurance organizations furnishing forest insurance, publicly-owned insurance organizations and privately-owned, are desirable in order to handle forest risks properly. The privately-owned forest insurance organizations should take up forest fire insurance only, and the publicly-owned ought to write insurance for forest fires and insect damages. 3) The privately-owned organizations furnishing forest insurance are desired to take up all the forest stands older than twenty years; whereas, the publicly-owned should sell forest insurance on artificially planted stands younger than twenty years with emphasis on compensating replanting costs of forest stands when they suffer damages. 4) Small forest stands, less than one hectare holding volume or stocked at smaller than standard per unit area are not to be included in a forest insurance writing, and the minimum term of insuring should not be longer than one year in the privately-owned forest insurance organizations although insuring period could be extended more than one year; whereas, consecutive five year term of insurance periods should be set as a mimimum period of insuring forest in the publicly-owned forest insurance organizations. 5) The forest owners should be free in selecting their forests in insuring; whereas, forest owners of the stands that were established with subsidy should be required to insure their forests at publicly-owned forest insurance organizations. 6) Annual insurance premiums for both publicly-owned and privately-owned forest insurance organizations ought to be figured out in proportion to the amount of insurance in accordance with the degree of risks which are grouped into three categories on the basis of the rate of risks throughout the country. 7) Annual premium should be paid at the beginning of forest insurance contract, but reduction must be made if the insuring periods extend longer than a minimum period of forest insurance set by the law. 8) The compensation for damages, the reimbursement, should be figured out on the basis of the ratio between the amount of insurance and insurable value. In the publicly-owned forest insurance system, the standard amount of insurance should be set on the basis of establishment costs in order to prevent over-compensation. 9) Forest insurance business is to be taken care of at the window of insurance com pnies when forest owners buy the privately-owned forest insurance, but the business of writing the publicly-owned forest insurance should be done through the forest cooperatives and certain portions of the premium be reimbursed to the forest cooperatives. 10) Forest insurance funds ought to be reserved by levying a property tax on forest lands. 11) In order to prevent forest damages, the forest owners should be required to report forest hazards immediately to the forest insurance organizations and the latter should bear the responsibility of taking preventive measures.

  • PDF