In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.
Recently may investigations have been studied on the high-speed machining by using machine tools. A CNC machine tool makes some tool path errors caused by software acceleration/deceleration. The faster a cutting feedrate is, the bigger the tool path errors are. Some known methods reduce these kinds of errors, but they make the total cutting time increased. This paper presents a feed-forward algorithm that can be generated by distorting the original tool path, and reduces the tool path errors and the total cutting time. The algorithm to generate a new tool path is represented as following; 1)calculating each distance of software acceleration/deceleration between two adjacent blocks, 2) estimating the distorted distance which is the adjacent-ratio-constant(k1, k2) multiply the distance of software acceleration/deceleration, 3) generating a 3-degree Bezier curve approximating the distorted tool path, 4) symmetrically transforming the Bezier curve about the intersection point between two blocks, and 5) connecting the transformed Bezier curve with the original tool path. The algorithm is applied to FANUC 0M. The study is to promote the high-precision machining and to reduce the total cutting time.
Special attention in the role of convection in vapor crystal growth has been paid since some single crystals under high gravity acceleration of $10g_0$ appear considerably larger than those under normal gravity acceleration ($1g_0$). With increasing the gravity acceleration from $1g_0$ up to $10g_0$, the total molar flux for ${\Delta}T$ = 30 K increases by a factor of 4, while for ${\Delta}T$ = 90, by a factor of 3. The maximum molar fluxes for three different gravity levels of $1g_0$, $4g_0$ and $10g_0$, appear approximately in the neighborhood of y = 0.5 cm, and the molar fluxes show asymmetrical patterns, which indicate the occurrence of either one single or more than one convective cell. As the gravitational level is enhanced form $1g_0$ up to $10g_0$, the intensity of convection is increased significantly through the maximum molar fluxes for ${\Delta}T$ = 30 K and 90 K. At $10g_0$, the maximum total molar flux is nearly invariant for for ${\Delta}T$ = 30 K and 90 K. The total molar flux increases with increasing the gravity acceleration, for $1g_0{\leq}g_y{\leq}10g_0$, and decreases with increasing the partial pressure of component B, a noble gas called as Kr (Krypton), $P_B$. The ${{\mid}U{\mid}}_{max}$ is directly proportional to the gravity acceleration for 20 Torr $P_B{\leq}300$ Torr. As the partial pressure of $P_B$ (Torr) decreases from 300 Torr to 20 Torr, the slopes of the ${{\mid}U{\mid}}_{max}s$ versus the gravity accelerations increase from 0.29 sec to 0.54 sec, i.e. by a factor of 2. The total molar flux of $Hg_2Cl_2$ is first order exponentially decayed with increasing the partial pressure of component B, $P_B$ (Torr) from 20 Torr up to 300 Torr.
Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.
The design of reference trajectory with respect to drag acceleration is necessary to decelerate from hypersonic speed safely after atmosphere re-entry of space vehicle. The re-entry guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of 6 trajectory constraints during the re-entry flight. This reference drag acceleration profile can be considered as the reference trajectory. The cost function is composed of the accumulated total heating on vehicle due to the reduction of weight. And a regularization is needed to prevent optimal drag profile from varying too fast and achieve realized trajectory. This paper shows the relations between velocity, drag acceleration and altitude in drag acceleration profile, and how to determine the reference trajectory.
고정익 항공기가 3차원의 복잡한 경로를 추종하기 위해 필요한 비교적 간단하며 효과적인 유도 제어 방법을 제시한다. 소개되는 방법은 비선형 경로 추종 유도 기법을 외부 루프로 사용한다. 외부 루프는 원하는 경로와 함께 항공기의 현재 위치와 속도를 바탕으로 비행 경로를 변화하기 위한 가속도 명령을 생성한다. 가속도 명령은 중력과 벡터적으로 결합되어 Specific Force Acceleration을 만든다. 이렇게 생성된 Specific Force Acceleration은 내부 루프를 위한 명령으로 쓰이는데, 이는 항공기가 가속도 자체보다는 Specific Force Acceleration을 더 직접적으로 제어할 수 있기 때문이다. 나아가 배면 비행이나 Slow Roll, Knife-Edge 등과 같은 옆미끄럼짐 기동을 하기 위해 필요한 롤 자세 제어 기법도 제시한다. 마지막으로 표준이 되는 여러 가지 곡예비행 경로들에 대한 시뮬레이션을 수행함으로써 제시된 기법의 성능을 검증한다.
In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.
Chase, J. Geoffrey;Barroso, Luciana R.;Hunt, Stephen
Structural Engineering and Mechanics
/
제18권3호
/
pp.287-301
/
2004
Structural acceleration regulation is a means of managing structural response energy and enhancing the performance of civil structures undergoing large seismic events. A quadratic output regulator that minimizes a measure including the total structural acceleration energy is developed and tested on a realistic non-linear, semi-active structural control case study. Suites of large scaled earthquakes are used to statistically quantify the impact of this type of control in terms of changes in the statistical distribution of controlled structural response. This approach includes the impulses due to control inputs and is shown to be more effective than a typical displacement focused control approach, by providing equivalent or better performance in terms of displacement and hysteretic energy reductions, while also significantly reducing peak story accelerations and the associated damage and occupant injury. For earthquake engineers faced with the dilemma of balancing displacement and acceleration demands this control approach can significantly reduce that concern, reducing structural damage and improving occupant safety.
This paper deals with a defect classification technique that considers the structural characteristics of a refrigerant compressor. First, the pressure pulsation of the refrigerant flowing in the suction pipe of a normal compressor was measured at the same time as the acceleration of the shell surface, and then the transfer function between the two signals was estimated. Next, the frequency-weighted acceleration signals of the defect classification target compressors were generated using the estimated transfer function. The estimation of the variance of the transfer function is presented to formulate the frequency-weighted acceleration signals. The estimated frequency-weighted accelerations were applied to defect classification using frequency-domain features. Experiments were performed using commercial compressors to verify the technique. The results confirmed that it is possible to perform an effective defect classification of the refrigerant compressor by the shell surface acceleration of the compressor. The proposed method could make it possible to improve the total inspection performance for compressors in a mass-production line.
This paper presents the shaking table testing method, only using building specimen as an experimental part taking into account the dynamic soil-structure interaction based on the substructure method. The Parmelee's soil stiffness is used as an assumed soil model in here. The proposed methodologies are summarized as: (1) Acceleration feedback method is the one that the shaking table is driven by the motion, corresponding to the acceleration at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the acceleration formulation. (2) Velocity feedback method is the one that the shaking table is driven by the motion, corresponding to the velocity at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the velocity formulation. The applicability of the proposed methodologies to the shaking table test is investigated and experimentally verified in this paper.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.