• Title/Summary/Keyword: Torsional ratio

Search Result 211, Processing Time 0.031 seconds

Suppression of aerodynamic response of suspension bridges during erection and after completion by using tuned mass dampers

  • Boonyapinyo, Virote;Aksorn, Adul;Lukkunaprasit, Panitan
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The suppression of aerodynamic response of long-span suspension bridges during erection and after completion by using single TMD and multi TMD is presented in this paper. An advanced finite-element-based aerodynamic model that can be used to analyze both flutter instability and buffeting response in the time domain is also proposed. The frequency-dependent flutter derivatives are transferred into a time-dependent rational function, through which the coupling effects of three-dimensional aerodynamic motions under gusty winds can be accurately considered. The modal damping of a structure-TMD system is analyzed by the state-space approach. The numerical examples are performed on the Akashi Kaikyo Bridge with a main span of 1990 m. The bridge is idealized by a three-dimensional finite-element model consisting of 681 nodes. The results show that when the wind velocity is low, about 20 m/s, the multi TMD type 1 (the vertical and horizontal TMD with 1% mass ratio in each direction together with the torsional TMD with ratio of 1% mass moment of inertia) can significantly reduce the buffeting response in vertical, horizontal and torsional directions by 8.6-13%. When the wind velocity increases to 40 m/s, the control efficiency of a multi TMD in reducing the torsional buffeting response increases greatly to 28%. However, its control efficiency in the vertical and horizontal directions reduces. The results also indicate that the critical wind velocity for flutter instability during erection is significantly lower than that of the completed bridge. By pylon-to-midspan configuration, the minimum critical wind velocity of 57.70 m/s occurs at stage of 85% deck completion.

Modified Moment Gradient Correction Factor of Nonprismatic Beams (변단면보의 개선된 모멘트 구배 수정계수)

  • Park, Jong Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • New design equations for calculating the lateral-torsional buck ling moment resistances of stepped I-section beams with/without continuous lateral top-flange bracing subjected to a point load, a series of point loads, and a uniformly distributed load, are suggested based on the results of elastic finite-element analyses. The new equations presented in this study are compared with the current moment gradient modifiers presented by other researchers and specifications. Although the study paper presents mainly stepped-beam cases subjected to a point load and a uniformly distributed load. The proposed equations include the length-to-height ratio effects for stepped beams with continuous lateral top-flange bracing. The new moment gradient correction factors could be easily used to calculate the lateral-torsional buckling moment resistance of stepped I-beams.

Response of non-structural components mounted on irregular RC buildings: comparison between FE and EC8 predictions

  • Aldeka, Ayad B.;Chan, Andrew H.C.;Dirar, Samir
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.351-373
    • /
    • 2014
  • This paper investigates the seismic response of lightweight acceleration-sensitive non-structural components (NSCs) mounted on irregular reinforced concrete (RC) primary structures (P-structures) using non-linear dynamic finite element (FE) analysis. The aim of this paper is to study the influence of NSC to P-structure vibration period ratio, peak ground acceleration, NSC to P-structure height ratio, and P-structure torsional behaviour on the seismic response of the NSCs. Representative constitutive models were used to simulate the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the frequencies of the P-structures. Full dynamic interaction is considered between the NSCs and P-structures. A set of 21 natural and artificial earthquake records were used to evaluate the seismic response of the NSCs. The numerical results indicate that the behaviour of the NSCs is significantly influenced by the investigated parameters. Comparison between the FE results and Eurocode (EC8) predictions suggests that EC8 underestimates the response of NSCs mounted on the flexible sides of irregular RC P-structures when the fundamental periods and heights of the NSCs match those of the P-structures. The perceived cause of this discrepancy is that EC8 does not take into account the amplification in the dynamic response of NSCs induced by the torsional behaviour of RC P-structures.

Dynamic Deformation Characteristics of Granite Weathered Soils Using RC/TS Tests (공진주/비틂전단시험을 이용한 화강풍화지반의 동적변형특성)

  • Kim, Dong-Soo;Ko, Dong-Hee;Youn, Jun-Ung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.35-46
    • /
    • 2004
  • In Korea, around one - third of the country is occupied by granite, and granite weathered soils are widely distributed. Most of the research on this soil has been performed using reconstituted specimens because of the extreme difficulty of undisturbed sampling due to the sensitive particle structures. Therefore, the comparisons of deformational characteristics, which is expressed in terms of shear and Young's moduli and damping ratio, obtained from the undisturbed and reconstituted specimens are important for the reliable understanding of soil behavior. In this study, the resonant column and torsional shear tests were performed on granite weathered soils in Korea, and the deformation characteristics of undisturbed and reconstituted soil on granite weathered soils were evaluated and compared.

  • PDF

Bending and Torsional Characteristics of Rectangular CFRP Tubes with Various Aspect Ratios (다양한 형상비를 갖는 사각 CFRP 튜브의 굽힘 및 비틀림 특성)

  • Lee, Yongsung;Cheong, Seong-Kyun
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • Fiber reinforced composite materials have outstanding specific strength and specific stiffness. So the use of composite materials increases in various kinds of industrial fields including sports goods such as bicycles. Composite materials are used to make structural parts with various kinds of shapes. Specially, rectangular composite tubes are used to make a few of composite bicycle frames, but there has been a few of research on this issue. Rectangular composite tubes are designed to have appropriate radius of curvature and endure bending and torsional loads. In this research, nine kinds of rectangular composite tubes having aspect ratios 1:1, 1:1.5, 1:2 and radius of curvatures R5, R10, R15 were fabricated. The carbon fiber reinforced composite material was used to make tubes having same cross sectional areas. The stacking sequence of tubes is $[0/90/{\pm}45]s$. Experimental evaluation was accomplished to apply bending and torsional load to the tubes. Experimental results show that bending and torsional characteristics depend on radius of curvature and aspect ratio of rectangular composite tubes.

Deformational Characteristics of Dry Sand Using Resonant Column / Torsional Shear Testing Equipment (공진주/비틂 전단(RC/TS)시험기를 이용한 건조 사질토의 변형특성)

  • 김동수
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.101-112
    • /
    • 1995
  • Deformational characteristics of soils, often expressed in terms of shear modulus and material damping ratios, are important parameters in the design of soil-structure systems subjected to cyclic and dynamic loadings. In this paper, deformational characteristics of dry sand at small to intermediate strains were investigated using resonant column/torsional shear(RC 175) apparatus. Both resonant column(dynamic) and torsional shear (cyclic) tests were performed in a sequential series on the same specimen. With the modification of motion monitoring system, the elastic zone, where the stress strain relationship is independent of loading cycles and strain amplitude, was veri tied and hysteretic damping was found even in this zone. At strains above cyclic threshold, shear modulus increases and damping ratio decreases with increasing number of loading cycles. Moduli and damping ratios of dry sand are independent of loading frequency and values obtained from pseudostatic torsional shear tests are Identical with the values from the dynamic resonant column test, provided the effect of number of loading cycles is considered in the conlparison. Therefore, deformational characteristics determined by RC/TS tests may be applied in both dynamic and static analyses of soil-structure systems.

  • PDF

Web strain based prediction of web distortion influence on the elastic LTB limiting length

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.271-278
    • /
    • 2022
  • Buckling is one of the most critical phoneme in the design of steel structures. Lateral torsional buckling (LTB) is particularly significant for slender beams generally subjected to loading in plane. The web distortion effects on LTB are not addressed explicitly in standards for flexural design of steel I-section members. Hence, the present study is focused to predict the influence of the web distortion on the elastic (Lr) limiting lengths given in American Institute of Steel Construction (AISC) code for the lateral torsional buckling (LTB) behavior of steel beams due to no provision in the code for consideration of web distortion. For this aim, the W44x335 beam is adopted in the buckling analysis carried out by the ABAQUS finite element (FE) program since it is one of the most critical sections in terms of lateral torsional buckling (LTB). The strain results at mid-height of the web at mid-span of the beam are taken into account as the monitoring parameters. The web strain results are found to be relatively greater than the yield strain value when L/Lr is equal to 1.0. In other words, the ratio of L/Lr is estimated from the numerical analysis to be about 1.5 when the beam reaches its first yielding at mid-span of the beam at mid-height of the section. Due to the effect of web distortion, the elastic limiting length (Lr) from the numerical analysis is obtained to be considered as greater than the calculated length from the code formulation. It is suggested that the formulations of the limiting length proposed in the code can be corrected considering the influence of the web distortion. This correction can be a modification factor or a shape factor that reduces sectional slenderness for the LTB formulation in the code.

Dynamic Properties of Hydraulic Mechanically Stabilized Slag as Railroad Material (철도노반재로서 수경성입도조정고로슬래그의 동적 물성특성)

  • 황선근;이일화;이성혁;최찬용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.391-398
    • /
    • 1999
  • Dynamic properties of hydraulic mechanically stabilized slag(HMS25) was studied for utilizing it as a roadbed material. HMS25 is a by product material during pig iron production process. It has a very good potential application as a roadbed material. Therefore, the resonant column and torsional shear tests were carried out to evaluate the dynamic properties of HMS25 which are necessary for designing roadbed of railroad track. As a result, it was found that HMS25 has excellent dynamic properties required for roadbed material used in railroad track.

  • PDF

Bending and Torsional Behaviors of Thick Composite Channel Beam (두꺼운 복합재료 채널빔의 굽힘 및 비틀림 거동)

  • Park, Mi-Jung;Choi, Yong-Jin;Chun, Heung-Jae;Byun, Joon-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.480-485
    • /
    • 2004
  • The applications of composite materials have increased over the past few decades in a variety of structures that require high ratio of stiffness and strength to weight ratios. Recently the thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results.

  • PDF

Torsional Vibration of a Hollow Shaft Subjected to a Moving Mass (이동질량에 의한 중공축의 비틀림 진동해석)

  • Park, Yong-Suk;Hong, Sung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.975-979
    • /
    • 2005
  • The analysis of a mechanical system, body traveling along the elastic structure, has been a topic of interest. The establishment of analytical method for the development and control of this system is required in the fields of many machine operations such as modern weapons and high-speed feed drive system for a machine tool. The dynamic equations are derived on the torsion of a cantilever hollow shaft induced by the spin-up of a moving mass and the displacement of the mass. Influences of design parameters such as the inertia ratio, the mass moving speed and the friction coefficient are discussed on the transient response of the system.