• Title/Summary/Keyword: Torsion Beam

검색결과 174건 처리시간 0.022초

승용차 부품의 정면밀링가공시 공구마모 및 표면거칠기 특성에 관한 연구 (A Study on Characteristics of Tool Wear and Surface Roughness in Face Milling of Automobile Parts)

  • 김성일;오성훈;문상돈;김태영
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.223-230
    • /
    • 1996
  • The quality and productivity in machining automobile parts are influenced by various factors such as cutting conditions, vibration, and used tool. To improve the quality and productivity of the automobile parts(torsion beam), lots of research on the evaluation of tool life and control of surface roughness has been required. Therefore, the width of flank wear, cutting force, and surface roughness are monitored to analyse the characteristics of tool wear and surface roughness at different tools. This experimental investigation is mainly focused on the characteristics of the tool wear, tool life and surface roughness in multi-insert milling of automobile parts(torsion beam) by using uncoated tungsten carbide tool(WC), TiN coated tool, and cermet tool.

  • PDF

굽힘-비틀림 복합하중을 받는 복합재료 구조물의 최적 강건 설계 (Robust Design of Composite Structure under Combined Loading of Bending and Torsion)

  • 윤지용;오광환;남현욱;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.211-214
    • /
    • 2005
  • This research studied robust design of composite structure under combined loading of bending and torsion. DOE (Design of Experiment) technique was used to find important design factors. The results show that the beam height, beam width, layer thickness and stack angle of outer-layer are important design parameter. The $2^{nd}$ DOE and RSM (Response Surface Model) were conducted to obtain optimum design. Multi-island genetic algorithm was used to optimum design. An approximate value of 6.65 mm in deflection was expected under optimum condition. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the sigma level reliability, the standard deviation of design parameter should be controlled within 2.5 % of average design value.

  • PDF

Using radial basis function neural networks to model torsional strength of reinforced concrete beams

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.335-355
    • /
    • 2006
  • The application of radial basis function neural networks (RBFN) to predict the ultimate torsional strength of reinforced concrete (RC) beams is explored in this study. A database on torsional failure of RC beams with rectangular section subjected to pure torsion was retrieved from past experiments in the literature; several RBFN models are sequentially built, trained and tested. Then the ultimate torsional strength of each beam is determined from the developed RBFN models. In addition, the predictions of the RBFN models are also compared with those obtained using the ACI 318 Code equations. The study shows that the RBFN models give reasonable predictions of the ultimate torsional strength of RC beams. Moreover, the results also show that the RBFN models provide better accuracy than the existing ACI 318 equations for torsion, both in terms of root-mean-square error and coefficients of determination.

조립식 경골잔교(Fish-bone Girder Pier)의 비틀림 거동분석을 통한 설계 시 고려사항 (Design Consideration of Fish-bone Girder Pier using the Analysis of Torsional Behavior)

  • 윤경민;윤기용;이진옥;임남형
    • 한국산학기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.561-568
    • /
    • 2014
  • 조립식 경골잔교는 Spine-girder인 단일거더 시스템이므로 휨 뿐만 아니라 비틀림에 큰 영향을 받는 구조물이다. 본 연구에서는 경골잔교의 합리적인 설계를 위하여 설계 시 고려사항을 도출하고자 하였다. 거동분석을 위한 구조해석 유한요소모델을 개발하고, 실험 결과와 비교하여 타당성을 검증하였다. 경골잔교의 거동분석을 통하여 국부적인 과대응력 발생을 방지하기 위하여 Bone-beam 하단부에 보강재 설치가 필요하며, 플랜지의 법선응력은 ?비틂, 플랜지와 웹의 전단응력은 순수비틂에 의한 영향이 지배적으로 작용하는 것을 확인하였다.

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

Analysis and design for torsion in reinforced and prestressed concrete beams

  • Rahal, Khaldoun N.
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.575-590
    • /
    • 2001
  • This paper presents a simplified method for the design and analysis of non-prestressed, partially prestressed, and fully prestressed concrete beams subjected to pure torsion. The proposed model relates the torsional strength to the concrete compressive strength and to the amounts of transverse and longitudinal reinforcement. To check the adequacy of this simple method, the calculated strength and mode of failure are checked against the experimental results of 17 prestressed concrete 66 reinforced concrete beam tests available in the literature, and very good agreement is found. The simplicity of the method is illustrated by two examples, one for design and another for analysis.

Exact solution for free vibration of curved beams with variable curvature and torsion

  • Zhu, Li-Li;Zhao, Ying-Hua;Wang, Guang-Xin
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.345-359
    • /
    • 2013
  • For the purpose of investigating the free vibration response of the spatial curved beams, the governing equations are derived in matrix formats, considering the variable curvature and torsion. The theory includes all the effects of rotary inertia, shear and axial deformations. Frobenius' scheme and the dynamic stiffness method are then applied to solve these equations. A computer program is coded in Mathematica according to the proposed method. As a special case, the dynamic stiffness and further the natural frequencies of a cylindrical helical spring under fixed-fixed boundary condition are carried out. Comparison of the present results with the FEM results using body elements in I-DEAS shows good accuracy in computation and validity of the model. Further, the present model is used for reciprocal spiral rods with different boundary conditions, and the comparison with FEM results shows that only a limited number of terms in the resultant provide a relatively accurate solution.

임의의 단면 형상을 갖는 복합재료 블레이드의 첨단 구조해석 모델 개발 (DEVELOPMENT OF A REFINED STRUCTURAL MODEL FOR COMPOSITE BLADES WITH ARBITRARY SECTION SHAPES)

  • Jung, Sung-Nam;Inderjit Chopra
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.215-218
    • /
    • 1999
  • A general structural model, which is an extension of the Vlassov theory, is developed for the analysis of composite rotor blades with elastic couplings. A comprehensive analysis applicable to both thick-and thin-walled composite beams, which can have either open- or closed profile is formulated. The theory accounts for the effects of elastic couplings, shell wall thickness, and transverse shear deformations. A semi-complementary energy functional is used to account for the shear stress distribution in the shell wall. The bending and torsion related warpings and the shear correction factors are obtained in closed form as part of the analysis. The resulting first order shear deformation theory describes the beam kinematics in terms of the axial, flap and lag bending, flap and lag shear, torsion and torsion-warping deformations. The theory is validated against experimental results for various cross-section beams with elastic couplings.

  • PDF

Thin-walled composite steel-concrete beams subjected to skew bending and torsion

  • Giussani, Francesca;Mola, Franco
    • Steel and Composite Structures
    • /
    • 제9권3호
    • /
    • pp.275-301
    • /
    • 2009
  • The long-term behaviour of simply supported composite steel-concrete beams with deformable connectors subjected to skew bending and torsion is presented. The problem is dealt with by recurring to the displacement method, assuming the bending and torsional curvatures and the longitudinal deformations of each sectional part as unknowns and obtaining a system of differential and integro-differential equations. Some solving methods are presented, in order to obtain exact and approximate solutions and evaluate the precision of the approximate ones. A case study is then presented. For the sake of clearness, the responses of the composite beam under loads applied in different directions are studied separately, in order to correctly evaluate the effects of each load condition.