• Title/Summary/Keyword: Torsades de Pointes

Search Result 14, Processing Time 0.018 seconds

Verification of Cardiac Electrophysiological Features as a Predictive Indicator of Drug-Induced Torsades de pointes (약물의 염전성 부정맥 유발 예측 지표로서 심장의 전기생리학적 특징 값들의 검증)

  • Yoo, Yedam;Jeong, Da Un;Marcellinus, Aroli;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.19-26
    • /
    • 2022
  • The Comprehensive in vitro Proarrhythmic Assay(CiPA) project was launched for solving the hERG assay problem of being classified as high-risk groups even though they are low-risk drugs due to their high sensitivity. CiPA presented a protocol to predict drug toxicity using physiological data calculated based on the in-silico model. in this study, features calculated through the in-silico model are analyzed for correlation of changing action potential in the near future, and features are verified through predictive performance according to drug datasets. Using the O'Hara Rudy model modified by Dutta et al., Pearson correlation analysis was performed between 13 features(dVm/dtmax, APpeak, APresting, APD90, APD50, APDtri, Capeak, Caresting, CaD90, CaD50, CaDtri, qNet, qInward) calculated at 100 pacing, and between dVm/dtmax_repol calculated at 1,000 pacing, and linear regression analysis was performed on each of the 12 training drugs, 16 verification drugs, and 28 drugs. Indicators showing high coefficient of determination(R2) in the training drug dataset were qNet 0.93, AP resting 0.83, APDtri 0.78, Ca resting 0.76, dVm/dtmax 0.63, and APD90 0.61. The indicators showing high determinants in the validated drug dataset were APDtri 0.94, APD90 0.92, APD50 0.85, CaD50 0.84, qNet 0.76, and CaD90 0.64. Indicators with high coefficients of determination for all 28 drugs are qNet 0.78, APD90 0.74, and qInward 0.59. The indicators vary in predictive performance depending on the drug dataset, and qNet showed the same high performance of 0.7 or more on the training drug dataset, the verified drug dataset, and the entire drug dataset.

Pre-clinical QT Risk Assessment in Pharmaceutical Companies - Issues of Current QT Risk Assessment -

  • Takasuna, Kiyoshi; Katsuyoshi, Chiba;Manabe, Sunao
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Since the Committee for Proprietary Medicinal Products (CPMP) of the European Union issued in 1997 a "points to consider" document for the assessment of the potential for QT interval prolongation by non-cardiovascular agents to predict drug-induced torsades de pointes (TdP), the QT liability has become the critical safety issue in the development of pharmaceuticals. As TdP is usually linked to delayed cardiac repolarization, international guideline (ICH S7B) has advocated the standard repolarization assays such as in vitro IKr (hERG current) and in vivo QT interval, or in vitro APD (as a follow up) as the best biomarkers for predicting the TdP risk. However, the recent increasing evidence suggests that the currently used above biomarkers and/or assays are not fully predictive for TdP, but also does not address potential new druginduced TdP due to the selective disruption of hERG protein trafficking to the cell membrane or VT and/or VF with QT shortening. There is, therefore, an urgent need for other surrogate markers or assays that can predict the proarrhythmic potential of drug candidate. In this review, we provide an ideal pre-clinical strategy to predict the potentials of QT liability and lethal arrhythmia of the drug candidates with recent issues in this field in mind, not at the expense of discarding therapeutically innovative drugs.

Inhibitory Effect of Nicardipine on hERG Channel

  • Chung, Eun-Yong;Cho, Hea-Young;Cha, Ji-Hun;Kwon, Kyoung-Jin;Jeon, Seol-Hee;Jo, Su-Hyun;Kim, Eun-Jung;Kim, Hye-Soo;Chung, Hye-Ju
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.448-453
    • /
    • 2010
  • Drug-induced long QT syndrome is known to be associated with the onset of torsades de pointes (TdP), resulting in a fatal ventricular arrhythmia. QT interval prolongation can result from blocking the human ether-a-go-go-related gene (hERG) channel, which is important for the repolarization of cardiac action potential. Nicardipine, a Ca-channel blocker and antihypertensive agent, has been reported to increase the risk of occasional serious ventricular arrhythmias. We studied the effects of nicardipine on hERG $K^+$ channels expressed in HEK293 cells and Xenopus oocytes. The cardiac electrophysiological effect of nicardipine was also investigated in this study. Our results revealed that nicardipine dose-dependently decreased the tail current of the hERG channel expressed in HEK293 cells with an $IC_{50}$ of 0.43 ${\mu}M$. On the other hand, nicardipine did not affect hERG channel trafficking. Taken together, nicardipine inhibits the hERG channel by the mechanism of short-term channel blocking. Two S6 domain mutations, Y652A and F656A, partially attenuated (Y652A) or abolished (F656A) the hERG current blockade, suggesting that nicardipine blocks the hERG channel at the pore of the channel.

Chemical Modification of the Human Ether-a-go-go-related gene (HERG) $K^+$ Current by the Amino-Group Reagent Trinitrobenzene Sulfonic Acid

  • Jo Su-Hyun;Choi Se-Young;Yun Ji-Hyun;Koh Young-Sang;Ho Won-Kyung;Lee Chin-O.
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.310-317
    • /
    • 2006
  • We investigated the effects of trinitrobenzene sulfonic acid (TNBS), an amino-group reagent, on the human ether-a-go-go-related gene (HERG) $K^+$ channels expressed in Xenopus oocytes. TNBS neutralizes the positively charged amino-groups of peptide N-terminal and lysine residues. External application of TNBS at 10 mM for 5 min irreversibly shifted the curves for currents at the end of the pulse and tail currents of HERG to a more negative potential and decreased the maximal amplitude of the $I_{tail}$ curve $(I_{tail,max})$. TNBS had little effect on either the activated current-voltage relationship or the reversal potential of HERG current, indicating that TNBS did not change ion selectivity properties. TNBS shifted the time constant curves of both activation and deactivation of the HERG current to a more hyperpolarized potential; TNBS's effect was greater on channel opening than channel closing. External $H^+$ is known to inhibit HERG current by shifting $V_{1/2}$ to the right and decreasing $I_{tail,max}$. TNBS enhanced the blockade of external $H^+$ by exaggerating the effect of $H^+$ on $I_{tail,max}$, not on $V_{1/2}$. Our data provide evidence for the presence of essential amino-groups that are associated with the normal functioning of the HERG channel and evidence that these groups modify the blocking effect of external $H^+$ on the current.