• Title/Summary/Keyword: Torricelli의 평형 관계식

Search Result 2, Processing Time 0.016 seconds

Prediction of Oil Amount Leaked from Damaged Tank Using 2-dimensional Particle Simulation (파손된 탱크의 기름 유출량 산정을 위한 2차원 입자법 시뮬레이션)

  • Nam, J.W.;Hwang, S.C.;Park, J.C.;Kim, M.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.278-285
    • /
    • 2011
  • In the present study, the numerical prediction of the oil amount leaked from the hole of a damaged tank is investigated using the improved MPS (Moving Particle Semi-implicit) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow. The governing equations, which consist of the continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators should be replaced by the particle interaction models based on a Kernel function. The simulation results are validated though the comparison with the analytic solution based on Torricelli's equilibrium relation. Furthermore, a series of numerical simulations under the various conditions are performed in order to estimate more accurately the initial amount of leaked oil.

  • PDF

A Preliminary Study for the Prediction of Leaking-Oil Amount from a Ruptured Tank (파손된 기름 탱크로부터의 유출양 산정을 위한 기초 연구)

  • Kim Wu-Joan;Lee Young-Yeon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.21-31
    • /
    • 2001
  • When an oil-spilling accident occurs at sea, it is of the primary importance to predict the amount of oil leakage for the swift response and decision-making. The simplest method of oil-leakage estimation is based on the hydrostatic pressure balance between oil inside the tank and seawater outside of leakage hole, that is the so-called Torricelli equilibrium relation. However, there exists discrepancy between the reality and the Torricelli relation, since the latter is obtained from the quasi-steady treatment of Bernoulli equation ignoring viscous friction. A preliminary experiment has been performed to find out the oil-leaking speed and shape. Soy-bean oil inside the inner tank was ejected into water of the outer tank through four different leakage holes to record the amount of oil leakage. Furthermore, a CFD (Computational Fluid Dynamics) method was utilized to simulate the experimental situation. The Wavier-Stokes equations were solved for two-density flow of oil and water. VOF method was employed to capture the shape of their interface. It is found that the oil-leaking speed varies due to the frictional resistance of the leakage hole passage dependent on its aspect ratio. The Torricelli factor relating the speed predicted by using the hydrostatic balance and the real leakage speed is assessed. For the present experimental setup, Torricelli factors were in the range of 35%~55% depending on the aspect ratio of leakage holes. On the other hand, CFD results predicted that Torricelli factor could be 52% regardless of the aspect ratio of the leakage holes, when the frictional resistance of leakage hole passage was neglected.

  • PDF