• Title/Summary/Keyword: Torque variation

검색결과 523건 처리시간 0.028초

전자식 조향 장치의 코일 구조 변화에 따른 수신 특성 (Receiving Characteristics of an Electronic Steering System according to the Change of the Coil Structure)

  • 박재홍;정규원;유승렬;김은하;최한올;이재현
    • 한국전자파학회논문지
    • /
    • 제22권9호
    • /
    • pp.868-874
    • /
    • 2011
  • 본 논문은 분해능이 향상된 인덕티브 방식 토크 센서의 새로운 구조를 제안한다. 토크 센서의 결합 구조와 수신 코일의 감김 수를 변화시켜 분해능을 증가시켰다. 이 토크 센서는 비접촉식으로 마모가 없기 때문에 내구성이 높으며, 진동이나 기구의 비틀림 등에 의한 편차가 적고, EMC(Electromagnetic Compatibility) 및 온도 특성이 우수하다.

급기가 프란시스 수차의 수압 맥동에 미치는 영향 (Effect of Air Admission on Pressure Pulsation in a Francis Turbine)

  • 전윤흥;박시훈;최한수;박준관
    • 신재생에너지
    • /
    • 제10권4호
    • /
    • pp.9-15
    • /
    • 2014
  • In this study pressure and shaft torque pulsation were measured with variation of head and flow during the model test for a 15 MW Francis Turbine. Pressure pulsations were measured at the inlet of the spiral casing and 4 points in the cone of the diffuser and shaft torque pulsation at the upper position of the turbine. The maximum amplitude of pressure pulsation appeared 2.03% of the maximum rated head with the frequency of 25% of the rated revolution and at the guide vane opening of $10^{\circ}$. Shaft torque pulsation appeared 0.01% of the rated shaft torque, fairly low value. Air was admitted through the cone and pressure pulsation gradually decreased with increase of air flow and kept nearly constant after 5% of the rated flow. A new Francis turbine of which specific speed is 115 m-kW had been designed to rehabilitate the old one and the model test was performed at EPFL. The commercial code, STAR-$CCM^+$ was used for numerical simulation of flow.

외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀위치 제어 (Precision Position Control of PMSM using Load Torque Observer and Parameter Compensator)

  • 고종선;이태훈
    • 전력전자학회논문지
    • /
    • 제9권1호
    • /
    • pp.42-49
    • /
    • 2004
  • 본 논문은 데드비트 외란 관측기를 사용한 외부 부하 외란 보상과 파라미터 추정기에 의한 보상 이득의 조정을 나타내고 있다. 결론적으로 PMSM의 응답은 지표 시스템을 따른다. 부하 토크 보상 방법은 데드비트 관측기로 구성된다. 노이즈 영향을 감소시키기 위해 MA 처리에 의해 구현된 후단 필터를 적용하였고, RLSM 파라미터 추정기를 가진 파라미터 보상기가 주어진 실제 시스템의 이득 계산시 사용된 파라미터로 가상 동작하여 이득이 오차가 없는 것처럼 동작하게 한다. 제안된 추정기는 문제를 풀기 위해 고성능 외란 관측기와 조합하여 사용한다. 제안된 제어 시스템은 부하토크와 파라미터 변화에 대해 강인하고 정밀한 시스템이 된다. 이상의 제안된 시스템의 안정성과 유용함이 컴퓨터 시뮬레이션과 실험을 통하여 확인되었다.

첨단 AI 기법을 이용한 전력 변환기의 고성능 제어기 개발 (A Development of Intelligent Robust Precision Control System for Power Conversion System using AI)

  • 고종선;이용재;김규겸;한후석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.92-95
    • /
    • 2001
  • This study presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM fellows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어 (Precision Speed Control of PMSM Using Neural Network Disturbance Observer and Parameter Compensator)

  • 고종선;이용재
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권10호
    • /
    • pp.573-580
    • /
    • 2002
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

로우터리 경운(耕耘)의 부하특성(負荷特性) 및 소요동력(所要動力)에 관(関)한 연구(硏究) (Tilling Load Characteristics and Power Requirement for Rotary Tillers)

  • 최규홍;류관희
    • Journal of Biosystems Engineering
    • /
    • 제9권2호
    • /
    • pp.27-36
    • /
    • 1984
  • This study was carried out to investigate the effects of the tilling depth, tilling travel speed and soil shear stress on the tilling load characteristics and power requirement for rotary tillers. The results obtained from the study are summarized as follows. 1. The average and maximum PTO torque increased as the tilling depth, tilling pitch and soil shear stress increased. A multiple linear regression equation to estimate the average PTO torque in terms of the above parameters was developed. 2. The ratios of maximum PTO torque to the average torque were in the range of 1.17 to 1.65 for the various tilling conditions tested. The variation in PTO torque increased greatly as the tilling pitch and soil shear stress increased, but decreased as the tilling depth increased. 3. Power requirement for the PTO shaft increased with the tilling depth, travel speed and soil shear stress, but decreased slightly as the tilling pitch increased. A multiple linear regression equation to estimate power requirement for the PTO shaft in terms of the above parameters was developed. 4. The specific power requirement for the rotary tiller was in the range of $0.008-0.015ps/cm^2$ for the various tilling conditons tested. The specific tilling capacity decreased as the tilling depth and soil shear stress increased, but increased with the tilling pitch. A multiple linear regression equation to estimate the specific tilling capacity in terms of the above parameters was developed.

  • PDF

Estimation of ultimate torque capacity of the SFRC beams using ANN

  • Engin, Serkan;Ozturk, Onur;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.939-956
    • /
    • 2015
  • In this study, in order to propose an efficient model to predict the torque capacity of steel fiber reinforced concrete (SFRC) beams, the existing experimental data related to torsional response of beams is reviewed. It is observed that existing data neglects the effects of some parameters on the variation of torque capacity. Thus, an experimental research was also conducted to obtain the effects of neglected parameters. In the experimental study, a total of seventeen SFRC beams are tested against torsion. The parameters considered in the experiments are concrete compressive strength, steel fiber aspect ratio, volumetric ratio of steel fibers and longitudinal reinforcement ratio. The effect of each parameter is discussed in terms of torque versus unit angle of twist graphs. The data obtained from this experimental research is also combined with the data got from previous studies and employed in artificial neural network (ANN) analysis to estimate the ultimate torque capacity of SFRC beams. In addition to parameters considered in the experiments, aspect ratio of beam cross-section, yield strengths of both transverse and longitudinal reinforcements, and transverse reinforcement ratio are also defined as parameters in ANN analysis due to their significant effects observed in previous studies. Assessment of the accuracy of ANN analysis in estimating the ultimate torque capacity of SFRC beams is performed by comparing the analytical and experimental results. Comparisons are conducted in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of efficiency ($E_f$). The results of this study revealed that addition of steel fibers increases the ultimate torque capacity of reinforced concrete beams. It is also found that ANN is a powerful method and a feasible tool to estimate ultimate torque capacity of both normal and high strength concrete beams within the range of input parameters considered.

BLDC 전동기의 정현파 공극 자속밀도 구현에 의한 코깅토오크 저감 (Reduction of Cogging Torque of BLDC Motors by Realizing Sinusoidal Air-Gap Flux Density Distribution)

  • 김사무엘;정승호;권병일;이철규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.140-142
    • /
    • 2006
  • Cogging torque is often a principal source of vibration, noise and difficulty of control in permanent-magnet brushless DC motors. Cogging torque can be minimized by sinusoidal air-gap flux density waveform because it is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance. Therefore, this paper will present a design method of magnetization system of bonded isotropic neodynium-iron-boron(Nd-Fe-B) magnets in ring type with sinusoidal air-gap flux density distribution and low manufacturing cost. An analytical technique of magnetization makes use of two-dimensional finite element method(2D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation.

  • PDF

동심원 환내의 정상.비정상 회전 유동 (Steady and Unsteady Rotating Flows between Concentric Cylinders)

  • 심우건
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

속도센서리스 벡터제어에 의한 유도전동기 운전 (A Study on vector control of induction motor drive using a speed sensorless)

  • 이춘상
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.417-420
    • /
    • 2000
  • In order to the torque control the indirect flux control was performed by controlling the ratio of e/f and the q-axis flux was estimated by the slip command and q-axis flux was estimated by the slip command and q-axis current in the rotor circuits. Also the frequency was controlled to keep on the q-axis flux to be zero and the constant torque characteristics could be obtained by generation the preset torque. In the induction motor driven by the boltage source inverter with the constant voltage and frequency the speed variation is expressed as a slip So the speed control can be achieved by slip compensation The slip was calculated with a q-flux current filtered by first-order filter and as the result the error problem which may occur in current detection was eliminated

  • PDF