• Title/Summary/Keyword: Torque variation

Search Result 523, Processing Time 0.025 seconds

Design and Torque Ripple Analysis of Brush-less DC Motor According to Delta Winding Connection

  • Lee, Tae-Yong;Seo, Myung-Ki;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.166-175
    • /
    • 2015
  • In this study, we describe the design method of a Brush-less DC (BLDC) motor with delta winding connection. After designing delta winding connection model with the $60^{\circ}$ flat-top region of the Back Electro-Motive Force (BEMF), an ideal current source analysis and a voltage source analysis, with a 6-step control, were conducted primarily employing Finite Element Method. In addition, as a current controller, we considered the Current Regulator with PI controller using Simulink for the comparison of torque characteristics. When the input current is controlled, the switching regions and reference signals are determined by means of the phase BEMF zero-crossing point. In reality, the input current variation depends on the inductance as well as input voltage, and it causes a torque ripple after all. Therefore, each control method considered in this research showed different torque ripple results. Based on the comparison, the causes of the torque ripple have been verified in detail.

Development of engine control based TCS slip control algorithm using engine map (엔진맵에 기초한 엔진제어 TCS 슬립제어 알고리듬의 개발)

  • Song, Jae-Bok;Kim, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.428-436
    • /
    • 1998
  • A TCS slip control system improves acceleration capability and steerability on slippery roads through engine torgue and/or brake torque control. This research mainly deals with the engine control algorithm via the adjustment of the engine throttle angle. The following new control strategy is proposed and investigated ; the TCS slip controller whose input is the difference between the desired driving wheel speed corresponding to the optimum slip ratio and the actual speed yields the target engine torque and then estimates the throttle angle based on the engine performance curve. Various simulation and hardware-in-the-loop simulation have been carried out. The results show the proposed strategy may compensate for the inherent nonlinearity between variation of the throttle angle and variation of the engine torque and produce better performance than the previous strategies without the engine map, especially in the high speed region.

Digital adaptive control of electro hydraulic velocity control system (전기.유압 속도제어 시스템의 디지탈 적용제어에 관한 연구)

  • 장효환;전윤식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.321-325
    • /
    • 1988
  • The objective of this study is to develop a microcomputer-based adaptive controller for an electro hydraulic velocity control system subjected to the variation of system parameters. The step response performance of the system with the adaptive controller is investigated for the variation of the external load torque, the moment of inertia and the reference inputs, and compared with that obtained by PID controller whose gains are constant. The experimental results show that this proposed model reference adaptive controller is robust to the variation of system parameters and yield much better control performance compared with the conventionel PID controller.

  • PDF

Development of the Method for Inspecting the Clamping Force of Torque Shear Bolts Using the Electricity energy of Electric torque wrench (전동렌치 전기에너지를 이용한 토크쉬어볼트의 체결축력 검사기법 개발)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Kim, Kang-Sik;Kim, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • The torque-coefficient of torque-shear type high-strength bolts is affected by the environmental factors, such as 'wet', 'rust', 'exposure to air' and workability during tightening high strength bolts. It is difficult to assume the direct tension induced into the bolt due to variation of torque-coefficient for torque-shear type high-strength bolts. Therefore, it is essential to measure tension loads of bolts and to verify the clamping force under construction. In this study, the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter. The regression analysis equation to measure the direct tension was derived by statistical analysis using Minitab program. It is considered that the trial product is reliable tool to evaluate the tension force comparable to a commercial torque wrench.

Robust Controller Design in the Linear Model Following Controlled Induction Motor (선형 모델추종제어되는 유도전동기에서 견실제어기 설계)

  • Kim, Woo-Hyun;Youn, Kyung-Sup;Kwon, Woo-Hyen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.411-418
    • /
    • 1999
  • Generally PI controller is used in the servo system, But the time response of the system which is designed by the PI control scheme is deviated from the desired time response by the system parameter variation or the perturbation like the torque disturbance. LMFC(Linear Model Following Controller) is used to make the response of the system follow that of the model even though the parameter variation or the perturbation exists. In this paper, the design method which uses auxiliary model to construct the robustness enhancer in LMFC is proposed. And this robustness enhancer is designed by robust control theory. The proposed method has facter convergence time against low frequency torque disturbance than LMFC. The results are verified by SIMULINK simulation and experiments.

  • PDF

The Study on Cutting Characteristic according to a Shape, Size and Array of Cutter for Paper Shredder (문서세단기의 커터날 형상, 크기, 배열과 절단특성에 관한 연구)

  • Lee, Wi-Ro;Lee, Dong-Gyu;Kim, Min-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.56-63
    • /
    • 2006
  • The aim of this study is to find the best cutting conditions as analyzing cutting process of paper shredder and shape of cutter. The test has been done variation of torque and cutting velocity according to load. When shape of cutter and distance between cutter and shaft are changed, The variation of cutting force according to cutting angle and load is geometrically analyzed. The result of geometrical analysis is presented that the radius and array of cutter is the method to improve torque of paper shredder. In this paper it is presented as basic method of design to improve cutting performance of paper shredder.

Maximum Torque Control Of Induction Machines in Field Weakening Region (약계자 영역에서 유도전동기의 최대 토오크 운전)

  • Kim, Sang-Hoon;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.277-279
    • /
    • 1994
  • In this paper, a novel field weakening scheme for the induction machine by the voltage control strategy is presented. The proposed algorithm ensures producing the maximum torque over the entire field weakening legion. Also by introducing the direct field-oriented control in the field weakening legion with large variation in machine parameters, the drive system can obtain the robustness to machine parameter variation. Moreover, by using estimated speed, sensorless speed control can be possible in very high speed lesion. Experimental results for a laboratory induction motor drive system confirm the validity or the proposed control algorithm.

  • PDF

Speed Control of Darrieus Wind Turbine for Load-variation (다리우스 풍력터빈의 부하변동에 따른 속도제어)

  • 오철수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.110-114
    • /
    • 1995
  • This paper is dealing with speed control of Darrieus Wind Turbine, which can be figured out from torque equation. The operating point of Darrieus Wind Turbine can be found from speed-torque curve, which is either stable or instable. The transfer of operating point due to variation of wind speed and generating power is shown in this paper.

  • PDF

Robust speed control for DC motor based on sliding mode with a disturbance observer (외란관측기를 갖는 SMC에 의한 DC모터의 강인한 속도제어)

  • JEONG, Tae-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.402-410
    • /
    • 2019
  • This paper deals with the disturbance observer (DOB) based sliding mode control (SMC) for a DC motor to control motor rotating speed precisely and to ensure strong robustness against disturbance including load torque and parameter variation. The reason of steady state error in speed on conventional SMC without DOB is analyzed in detail. Especially, the suggested DOB is designed to prevent measuring noise and harmonics caused by derivative operation on rotating speed. The control performance of the DOB based SMC is evaluated by the various simulations. The simulation results showed that the DOB based SMC had more robust performance than the SMC system without DOB. Especially, precise speed control was possible even though motor parameter variation and load torque was added to the system.

Experimental Analyses of Flow in a Production Torque Converter Using LDV (LDV를 이용한 토크컨버터 내 유동의 실험적 분석)

  • Yoo, S.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.757-762
    • /
    • 2018
  • LDV(laser Doppler velocimetry) measurements were conducted on the exit region of the impeller passage and the gap between the impeller and turbine blades under 0.8 speed ratio. The 0.8 speed ratio has an impeller speed of 2000rpm and a turbine speed of 1600rpm. A periodic variation of the mass flow rate is present in many of the measurements made. The frequency of this variation is the same as the frequency of the turbine blades passing the impeller passage exit. It is found that the instantaneous position of the turbine had effect on fluid flow inside the impeller passage and gap region. This study would aid in the construction of higher accuracy CFD models of this complex turbomachinery device.