• Title/Summary/Keyword: Torque motor

Search Result 2,839, Processing Time 0.031 seconds

Speed Sensorless Torque Monitoring Of Induction Spindle Motor On Machine Tool (공작기계 주축 유도전동기의 속도 센서리스 토크 감시)

  • 홍익준;권원태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.18-23
    • /
    • 2002
  • In this paper, The torque of CNC spindle motor during machining is estimated without speed measuring sensor. The CNC spindle system is divided into two parts, the induction spindle motor part and mechanical part. In mechanical part the variation of the frictional force due to the increment of the cutting torque and the effect of damping coefficient is investigated. Damping coefficient is found to be a function of spindle speed and not influenced by the weight of the load, while frictional force is a function of both the cutting torque and spindle speed. Experimental formulars are drawn for damping coefficient as a function of spindle speed and frictional force as a function of both cutting torque and spindle speed respectively, to estimate the cutting torque accurately. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time. Torque of the spindle induction motor is well monitored with 3% error range under various cutting conditions.

  • PDF

Feed and spindle motor currents as monitoring parameters in cutting process (절삭공정 모니터링을 위한 이송모터의 주축모터 전류)

  • 오영탁;김기대;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.555-559
    • /
    • 2001
  • Feed and spindle motor currents are used toi monitor the cutting process practically. The sensitivity of spindle drive system is lower than that of feed drive system, but the cutting torque is represented well by the spindle motor current. During multi-axis cutting, it is difficult to calculate the resultant cutting force using feed motor currents, because each feed force is reflected by each axis feed motor current with different time delay. It is also difficult to compensate the frictional torque using the feed motor current, because the magnitude of the frictional torque is dependent of the feedrate, table position, and cutting direction. On the other hand, cutting torque can be estimated well using spindle motor current which is independent of the cutting direction.

  • PDF

A Driving Torque Prediction of Brushless DC Motor by Using the Measured Current Data (전류측정 데이터를 이용한 브러쉬 없는 직류전동기의 구동토크 예측)

  • 변영철;전혁수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.242-250
    • /
    • 1999
  • This paper presents an estimation scheme of the external torque applied on the motor by using measured motor input current when the IPM(Interior Permanent Magnet) rotor type BLDC motor operates with constant speed. In general, the BLDC motor is controlled by vector control method. If it could be operated at over critical speed, the control scheme must be modified to flux-weakening control method. The external torque applied on the motor using flux-weakening control method could not be calculated by conventional torque equation because the demagnetizing current Id exists in the motor input current. In this paper, the commonly used flux-weakening control method is studied and the modified torque estimation scheme is suggested. The estimation scheme has been verified by the simulations and experimental results.

  • PDF

A Study on Flux Barrier of Permanent Magnet Assisted Reluctance Synchronous Motor Design using FEM (FEM을 이용한 영구자석형 릴럭턴스 동기전동기의 자속 장벽 설계에 대한 연구)

  • Kim, Nam-Hun;Nam, Sang-Hyun;Choi, Kyeong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.295-302
    • /
    • 2008
  • This paper examines the design and the performance of a PMA-RSM(permanent-magnet assisted reluctance synchronous motor) for washing machine. A FEM(finite element method) is used to analyze performance and maximum torque characteristic of the proposed PMA-RSM. The designed motor is a combination of salient poles, which is making reluctance torque, and permanent magnet which are located on the air-gap of rotor to get a enough torque during low speed resign. Typical flux barrier type reluctance synchronous motor and the effects of adding magnet into the flux barrier of the rotor of a PMA-RSM are compared and examined. Also the maximum torque point of the reluctance torque by reluctance and reaction torque by magnetic alignment torque, which is in barrier, of the proposed PMS-RSM are derived through simulation. Using this results, the characteristics analysis of a performance, an average torque and a torque ripple of flux barrier RSM and the proposed PMA-RSM are performed through FEM under the saturation effect respectively.

Modified Direct Torque Control System of Five Phase Induction Motor

  • Kim, Nam-Hun;Kim, Min-Huei
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.266-271
    • /
    • 2009
  • In this paper, improved direct torque control(DTC) of five-phase induction motor(IM) is proposed. Due to the additional degrees of freedom, five-phase IM drives present unique characteristics. One of them is the ability of enhancing the torque producing capability of the motor. Also five-phase motor drives possess many others advantage compared with the traditional three-phase motor drives. Such as, reducing the amplitude and increasing of frequency of torque pulsation, reducing amplitude of current per phase without increasing the voltage per phase and increasing the reliability. The direct torque control method is advantageous when it is applied to the five-phase IM. Because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors by the three-phase inverter. The 32 space voltage vectors are divided into three groups according to their magnitudes. The characteristics and dynamic performance of traditional five-phase DTC are analyzed and new DTC for five-phase IM is proposed. Therefore, a more precise flux and torque control algorithm for the five-phase IM drives can be suggested and explained. For presenting the superior performance of the pro-posed direct torque control, experimental results is presented using a 32 bit fixed point TMS320F2812 digital signal processor

A study on the torque characteristic of AC servo system by phase advance control (진상각 제어에 따른 AC 서보 모터의 토오크 특성에 관한 연구)

  • 임윤택;손명훈;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.393-400
    • /
    • 1992
  • The DC(Direct-Current) servo motor has widely used for many application areas, FA(Factory Automation), OA(Office Automation) and home applications. But DC servo motor needs periodical inspection because it has brush and commutator. Recently, AC servo motor has expanded it's application areas due to for the development of the power semi-conductor and control technology. But it has large torque ripple for it's small number of commutation. And it also has cogging torque due to permanent magenet rotor. Therefore it can't run balence rotarion. Many torque ripple reduction methods are published. In this paper, phase advanced method adopted for torque ripple reduction of AC servo motor. In this research, AC servo motor torque characteristic variation surveied under the phase advance control through the computer simulation. Under the simulation, the load inertia varied from 0.0001[Kg.m$^{2}$] to 0.0314[Kg.m$^{2}$]. The result os nonlinear simulation, torque and speed ripple of AC servo motor under the phase advance control reduced approximately 50[%] and 10[%]. And maximum torque of AC servo motor under phase advance control condition increased about 5[%] as compare with fixed switching time.

  • PDF

Reducing Cogging Torque by Flux-Barriers in Interior Permanent Magnet BLDC Motor (회전자 자속장벽 설계에 의한 영구자석 매입형 BLDC 전동기 코깅 토오크 저감 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.491-497
    • /
    • 2006
  • For high efficiency and easy speed control of brushless DC (BLDC) motor, the demand of BLDC motor is increasing. Especially demand of interior permanent magnet (IPM) BLDC with high efficiency and high power in electric motion vehicle is increasing. However, IPM BLDC basically has a high cogging torque that results from the interaction of permanent magnet magnetomotive force (MMF) harmonics and air-gap permeance harmonics due to slotting. This cogging torque generates vibration and acoustic noises during the driving of motor. Thus reduction of the cogging torque has to be considered in IPM BLDC motor design by analytical methods. This paper proposes the cogging torque reduction method for IPM BLDC motor. For reduction of cogging torque of IPM BLDC motor, this paper describes new technique of the flux barriers design. The proposed method uses sinusoidal form of flux density to reduce the cogging torque. To make the sinusoidal air-gap flux density, flux barriers are applied in the rotor and flux barriers that installed in the rotor produce the sinusoidal form of flux density. Changing the number of flux barrier, the cogging torque is analyzed by finite element method. Also characteristics of designed model by the proposed method are analyzed by finite element method.

Instantaneous Torque Control of IPMSM for maximum Torque Drive in Torque and Current Plane (토크와 전류 평면에서 최대토크 운전을 위한 IPMSM의 순시 토크제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The paper proposes instantaneous torque control of IPMSM for maximum torque drive of torque and current plane. The control scheme is based on the mathematical model of the motor and is applicable to the constant torque and field weakening operations. The scheme allows the motor to be driven with maximum torque per ampere(MTPA) characteristic below base speed and it maintains the maximum voltage limit of the motor wide field weakening and the motor current limit under all conditions of operation accurately. For each control mode, a condition that determines the optimal d-axis current $^id$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for drive of wide speed range, the operating characteristics controlled that maximum torque control are examined in detail by simulation.

Cogging Torque Analysis of BLDC Motor with the Axial Displacement of Rotor (축방향 변위를 가진 BLDC 전동개의 코깅토크 해석에 관한 연구)

  • Kim, Young-Kyoun;Lee, Jeong-Jong;Nam, Hyuk;Hong, Jung-Pyo;Jin, Young-Woo;Hur, Yoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.368-372
    • /
    • 2003
  • This paper deals with the cogging torque analysis of a BLDC Motor, which has the axial displacement of its rotor. In order to improve the torque performance of the BLDC motor, Brushless motor is commonly designed to minimize its cogging torque. Therefore, a skewed model is used to reduce the cogging torque. However, even though the rotor or stator is skewed, the cogging torque could be increased by the axial displacement of the rotor, which occurs when the BLDC Motor is manufactured. Therefore, this paper investigates the effect of the axial displacement of the rotor on the cogging torque. In order to investigate the effect, an analysis method, which is 3D-EMCN in combination with 2D-FEM, is proposed to analyze the cogging torque of the BLDC motor with the axial displacement of its rotor, and the result of the analysis is verified by comparison with the experimental result.

Indirect Measurement of Torque of the Auto Screw Drive to using the Current Signals of DC Motor (DC 모터 전류 신호를 이용한 자동나사체결기 토크의 간접 측정)

  • 이정윤;이정우;이준호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.299-304
    • /
    • 2003
  • This paper proposes an algorithm to estimate the screw torque from parameters of induction motor and current of DC motor without strain gage and torque cell. The parameters of friction torque search for damping ratio and electromotive force constant use the motor torque and angula speed signals be generated in the induction motor, make use of oscilloscope and stroboscope for precise measured of experimental data, measured physical parameters through experimental. In addition the screw torque estimated use of measured current signals from induction moor. The results, theory and simulation recognized well coincidence.

  • PDF