• Title/Summary/Keyword: Torque motor

Search Result 2,839, Processing Time 0.038 seconds

A Simplified Torque Ripple Reduction using the Current Shaping of the Flux Switched Reluctance Motor

  • Lee, Heon-Hyeong;Wang, Qi;Kim, Se-Joo;Choi, Woong-Chul;Lee, Geun-Ho
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.200-205
    • /
    • 2012
  • Recently, applications of the reluctance torque motor have been quite limited due to their inherent limitation of noise and vibration and thus, researches on the reluctance motor have been limited as well. However, with the tremendous increase in the cost of rare earth material magnets, studies of the reluctance torque motor are being conducted more and more. In principle, reluctance torque is generated when the inductance is changed. Therefore, in order to generate continuous torque in the switched reluctance motor, it is necessary to figure out the exact inductance level corresponding to the rotor position and the current level to be applied in that rotor position, respectively. If the current level or the rotor position is not accurately determined, then the generated reluctance torque becomes unstable and undesirable torque ripples prevail to eventually cause noise and vibrations. In this research, a flux switched reluctance motor (FSRM), which is classified into the switched reluctance motor (SRM), was studied. A methodology using the current shaping control according to the rotor position was proposed. Based on the proposed methodology, the optimal current waveform and the torque distribution function for the FSRM to minimize torque ripple was established and demonstrated in this paper.

An Analysis of Static and Dynamic Characteristics of Torque Motor (토크모터의 정특성과 동특성 해석)

  • Huh, J.Y.;Park, C.S.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • In the early of 1950, the high response magnetic torque motor was developed for driving electro-hydraulic servo valves. Since then it has been broadly used for industrial application and the research of development or improvement of the torque motor is still being conducted. The purpose of this study is to present useful design criteria for the torque motor design. For this, torque motor is modelled and linearized. The static characteristics of the torque motor are investigated by direct computation of the derived linearlized equations. The dynamic characteristics of the torque motor are investigated with the derived transfer function by using Matlab and compared with the results of the linearlized analysis by using AMESim simulation with actual values of the physical parameters. Finally, the design criteria obtained from the analysis are reviewed.

Direct Torque Control of a Synchronous Reluctance Motor Using the Finite Element Method

  • Lee Sang-Don
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.173-180
    • /
    • 2005
  • The construction of a Synchronous Reluctance Motor (SynRM) is simple and also highly economical because a stator from the existing AC motor can be used. Since the synchronous inductance in the Synchronous Reluctance Motor is an element that is proportional to torque, its exact value must be experimentally or analytically found for accurate control and performance development of the motor. In this paper, direct torque control (DTC) simulation is carried out to maximize the torque of the Synchronous Reluctance Motor and the fast response characteristics with the inductance value by the Finite Element Method (FEM). The response characteristics are compared through the proposed direct torque control and torque response characteristics that are based on the existing PI Control in order to confirm the fast response features. To test the performance of the direct torque controller, the torque response is analyzed with variable speed and load condition.

Parameters Estimation and Torque Monitoring for the Induction Spindle Motor (주축용 유도전동기의 매개변수 추정과 토크 모니터링 시스템)

  • Kwon, Won-Tae;Kim, Gyu-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.238-244
    • /
    • 2004
  • To monitor the torque of an induction motor using current, the accurate identification of the motor parameters is very important. In this study, the motor parameters such as rotor resistance, stator and rotor leakage inductance, mutual inductance are estimated for torque monitoring and indirect vector control. Estimated parameters are used to monitor the torque of vector controlled induction motor without any speed measuring sensor. Stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. From the experiments, the proposed method shows a good estimation of the motor parameters and torque under the normal rotational speed.

Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection (고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감)

  • Kwon, Soon-O;Lee, Jeong-Jong;Lee, Geun-Ho;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

Speed Sensorless Torque Monitoring of Induction Spindle Motor using Graphical Programming (그래픽 프로그래밍 기법을 이용한 주축용 유도전동기의 속도 센서리스 토크감시)

  • Park, Jin-U;Gwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.107-113
    • /
    • 2002
  • To monitor the torque of an induction motor using current, rotating speed has been measured and used to calculate the slip angular velocity. Additional sensor, however, can cause extra expense and trouble. In this paper, a new algorithm is proposed to monitor the torque of vector controlled induction motor without any speed measuring sensor. Only stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm and to monitor the torque of an induction motor in real time. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. From several experiments, the proposed method shows a good estimation of the motor torque under the normal rotational speed.

Speed Sensorless Torque Monitoring On CNC Lathe Using Internet (인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시)

  • 홍익준;권원태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.467-470
    • /
    • 2002
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel is monitoring them. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using internet is suggested. The torque of vector controlled induction motor is estimated without speed measuring sensor. Only stator currents are measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. Mechanical part of the machine tool is also reconstructed using the data obtained from preliminary experiments. Torque of the spindle induction motor is well monitored on the client computers with 3% error range under various cutting conditions.

  • PDF

Analysis and Design of 12/14 Bearingless Switched Reluctance Motor for Self-Starting and Torque Ripple Reduction (자기기동 및 토크리플 저감을 위한 12/14 베어링리스 SRM의 설계 및 특성해석)

  • Xu, Zhenyao;Lee, Dong-Hee;An, Young-Ju;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.682-684
    • /
    • 2015
  • A 12/14 bearingless switched reluctance motor (BLSRM) with hybrid stator poles has been proposed due to the outstanding decoupling characteristics between the torque and suspending force. However, the motor is a two-phase motor. The output torque of the motor has torque dead zone and high torque ripple. Hence, the motor cannot self-start at some rotor positions. To solve the self-starting problems and reduce the torque ripple, a stepped rotor is proposed in this paper. Then, the motor with the stepped rotor is optimally designed. In the new designed motor, the majority parameters are kept the same with those of original motor; only the torque pole arc and rotor pole shape are optimally designed. The characteristics of the redesigned motor, such as inductance, torque and suspending force, are analyzed and compared with those in the original motor. Finally, the effectiveness of the proposed method is verified by the simulation results.

  • PDF

Speed-Sensorless Torque Monitoring on CNC Lathe using Internet (인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시)

  • 홍익준;권원태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.99-105
    • /
    • 2004
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel monitors it. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using interne is suggested. To estimate the torque accurately, spindle driving system of an CNC lathe is divide into two parts, induction motor part and mechanical part attached to the induction motor spindle. Magnetizing current is calculated from the measured 3 phase currents without speed sensor used to estimate the torque generated by an induction motor. In mechanical part of the system, some of the torque is used to overcome friction and remaining torque is used to overcome cutting force. An equation to estimate friction torque is drawn as a function of cutting torque and rotation speed. Graphical programming is used to implement the suggested algorithm. to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. Torque of the spindle induction motor is well monitored on the client computers in about 3% error range under various cutting conditions.

A Study on the Reduction of Cogging Torque of Outer-Rotor Type BLDC Motor for Washing Machines (세탁기용 외전형 BLDC 전동기의 코깅 토오크 저감에 관한 연구)

  • Kim Jae-Min;Chang Cheul-Hyeok;Chung Tae-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.222-230
    • /
    • 2005
  • This paper deals with the reduction of cogging torque of a outer-rotor type BLDC motor mainly used for washing machines. The motor comprises permanent magnet outer-rotor and stator with coils and core. This structure inherently produces vibration and cogging torque because of uneven reluctance according to rotation of the rotor. Up to now, adopted a type of 24 magnet pole and 36 slot-stator. This generates high main torque but accompanies comparatively large cogging torque. This paper proposes a 32-pole 36-slot type motor which reduces cogging torque remarkably. The influence of cogging torque is varied according to pole-slot combinations. The characteristic of the motor was obtained by a two-dimensional finite element method coupled with a drive circuit. The performance of the proposed model is superior to that of the existing model because of the reduction of torque ripple and the improvement of back ernf wave form.