• Title/Summary/Keyword: Torque monitoring system

Search Result 66, Processing Time 0.031 seconds

Development of the Power Monitoring System for the Planetary Geared Motor using Hall Effect Sensor (홀 이펙트 센서를 이용한 유성기어 감속기모터의 동력 모니터링 시스템 개발)

  • Jang, In-Hun;Sim, Kwee-Bo;Oh, Se-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.914-919
    • /
    • 2004
  • When the motor is rotating, the torque and rpm are varying as the loads or the driving status connecting through reduction units are changing. On the contrary, one can monitor the changes of the loads or the driving status in the manner of measuring motor torque and rpm. There is a torque measuring method using the strain gauge and bridge circuit. But, because this is the contact method, it has the life time which is dependent on rotating velocity and used time. So this system demands on replacement of some Parts or whole system itself for maintenance. And this system is also relatively big and expensive, requiring preceding annoying process. In this paper, we are going to suppose non-contact method to measure torque and rpm using the Hall effects sensor For this we have made the planetary geared reduction motor with Hall sensors and with the monitoring system. The monitoring system displays the sensing data(torque, rpm) and calculated data( power) and also has the network capability with Bluetooth protocol. Our solution is much more inexpensive ;md simple method to measure torque and rpm than before.

A Study on the Wear Detection of Drill State for Prediction Monitoring System (예측감시 시스템에 의한 드릴의 마멸검출에 관한 연구)

  • 신형곤;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.103-111
    • /
    • 2002
  • Out of all metal-cutting process, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. One important aspect in controlling the drilling process is monitoring drill wear status. There are two systems, Basic system and Online system, to detect the drill wear. Basic system comprised of spindle rotational speed, feed rates, thrust torque and flank wear measured by tool microscope. Outline system comprised of spindle rotational speed feed rates, AE signal, flank wear area measured by computer vision, On-line monitoring system does not need to stop the process to inspect drill wear. Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. The output was the drill wear state which was either usable or failure. This paper deals with an on-line drill wear monitoring system to fit the detection of the abnormal tool state.

Immersion Ration Estimation Using Spindle Motor Current during Milling (밀링공정에서 주축모터전류를 이용한 절입비 추정)

  • Cho, K.-J.;Kwon, W.-T.;Cho, D.-W.;Chu, C.-N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.222-229
    • /
    • 1999
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ration using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to cutting torque acting on a single tooth at the swept angle of cut and can be acquired form cutting torque signals. Average cutting torque per revolution can also be calculate form cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current.

  • PDF

In-process Immersion Ratio Estimation Using Spindle Motor Current during Face Milling (정면밀링공정중 추축모터전류를 이용한 절입비의 실시간 추정)

  • 조규진;오영탁;권원태;주종남
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.57-64
    • /
    • 2000
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ratio using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to the cutting torque acting on a single tooth at the swept angle of cut and can be acquired from cutting torque signals. Average cutting torque per revolution can also be calculated from cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current. Varying immersion ratio is also estimated well using the presented algorithm.

  • PDF

Chip Disposal State Monitoring in Drilling Using Neural Network (신경회로망을 이용한 드릴공정에서의 칩 배출 상태 감시)

  • , Hwa-Young;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.133-140
    • /
    • 1999
  • In this study, a monitoring method to detect chip disposal state in drilling system based on neural network was proposed and its performance was evaluated. If chip flow is bad during drilling, not only the static component but also the fluctuation of dynamic component of drilling. Drilling torque is indirectly measured by sensing spindle motor power through a AC spindle motor drive system. Spindle motor power being measured drilling, four quantities such as variance/mean, mean absolute deviation, gradient, event count were calculated as feature vectors and then presented to the neural network to make a decision on chip disposal state. The selected features are sensitive to the change of chip disposal state but comparatively insensitive to the change of drilling condition. The 3 layerd neural network with error back propagation algorithm has been used. Experimental results show that the proposed monitoring system can successfully recognize the chip disposal state over a wide range of drilling condition even though it is trained under a certain drilling condition.

  • PDF

A Study on the Detection of the Abnormal Tool State for Neural Network in Drilling (신경망에 의한 공구 이상상태 검출에 관한 연구)

  • Shin, Hyung-Gon;Kim, Tae-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.821-826
    • /
    • 2001
  • Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. One important aspect in controlling the drilling process is monitoring drill wear status. Accordingly, this paper deals with Basic system and Online system. Basic system comprised of spindle rotational speed, feed rates, thrust, torque and flank wear measured tool microscope. Online system comprised of spindle rotational speed, feed rates, AE signal, flank wear area measured computer vision. On-line monitoring system does not need to stop the process to inspect drill wear. Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. This paper deals with an on-line drill wear monitoring system to fit the detection of the abnormal tool state.

  • PDF

Intelligent bolt-jointed system integrating piezoelectric sensors with shape memory alloys

  • Park, Jong Keun;Park, Seunghee
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.135-147
    • /
    • 2016
  • This paper describes a smart structural system, which uses smart materials for real-time monitoring and active control of bolted-joints in steel structures. The goal of this research is to reduce the possibility of failure and the cost of maintenance of steel structures such as bridges, electricity pylons, steel lattice towers and so on. The concept of the smart structural system combines impedance based health monitoring techniques with a shape memory alloy (SMA) washer to restore the tension of the loosened bolt. The impedance-based structural health monitoring (SHM) techniques were used to detect loosened bolts in bolted-joints. By comparing electrical impedance signatures measured from a potentially damage structure with baseline data obtained from the pristine structure, the bolt loosening damage could be detected. An outlier analysis, using generalized extreme value (GEV) distribution, providing optimal decision boundaries, has been carried out for more systematic damage detection. Once the loosening damage was detected in the bolted joint, the external heater, which was bonded to the SMA washer, actuated the washer. Then, the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. Additionally, temperature variation due to the heater was compensated by applying the effective frequency shift (EFS) algorithm to improve the performance of the diagnostic results. An experimental study was conducted by integrating the piezoelectric material based structural health monitoring and the SMA-based active control function on a bolted joint, after which the performance of the smart 'self-monitoring and self-healing bolted joint system' was demonstrated.

Analysis of Squirrel Cage Induction Motors with Stator Winding Inter-turn Short Circuit (고정자 권선 단락에 따른 농형 유도전동기의 특성해석)

  • Kim, Mi-Jung;Kim, Byong-Kuk;Moon, Ji-Woo;Cho, Yun-Hyun;Hwang, Don-Ha;Kang, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.150-152
    • /
    • 2007
  • The stator faults yield asymmetrical operation of induction machines, such as irregular current, torque pulsation, increased losses and decreased average torque. So it is necessary to detect the stator faults and develope the monitoring system for detecting faults including vibration and noise. This paper describes the method to analysis the induction motors with the stator winding inter-turn short for investigation of the asymmetrical operation during normal and transient states. And a simple method is used for the simulation and analysis of the induction machines with stator asymmetries. Finally, simulation results, finite element analysis and experimental ones are presented. The results can be useful for real-time on-line monitoring of an induction motor.

  • PDF

Mechanical Seal의 이상설계 감시에 관한 연구

  • 임순재;최만용;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.166-171
    • /
    • 1992
  • Mechanical seals are generally used in the fields of industries as sealing devices. The failure of mechanical seals like crack, leakage, breakage fast and severe wear, excessive torque, and squeaking result in big problems. For the development of monitoring system, this study was carried out to identify abnormal phenomina on alumina(AI $\_$2/ O /sub3/) seal ring and resin bonded carbon ring, and to propose the proper parameter for monitoring failure on mechanical seals. Sliding were tests are conducted at 12 experimental conditions that contains 3 different contact pressure and 4 surface conditions. Torque, temperature, and acoustic emission are measured. Optical microstructure and scanning electron microscopy are observed for the wear processing every 10 minute sliding at rotation speed of 1750 RPM.

Establishment of Performance Tests Methods of Universal Motors Using PC-Based Virtval Instrumentation System (PC 기반 가상계측시스템에 의한 유니버설 모터 성능 시험법 확립)

  • 이성호;장석명;김영관;김덕진
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.116-123
    • /
    • 2003
  • This paper deals with an experimental study for on-line monitoring the performance of a universal motor for vacuum cleaner. Performance tests are conducted on the PC-based virtual instrumentation system designed using the graphical programming language LabVIEW. The proposed monitoring system is capable of performing real time measurement functions, including data acquisition, display, and analyses in the time and frequency domains, as well as data archiving. The measured mechanical and iron loss, voltage, current, input power, power factor, torque, and efficiency characteristics are presented as function of speed.