• Title/Summary/Keyword: Torque controller

Search Result 988, Processing Time 0.028 seconds

High Speed and Robust Control System with Deadbeat Disturbance Observer for 3D Eye Imaging Equipment (망막의 3차원 영상화를 위한 데드비트 외란 관측기를 가진 고속, 고강성 제어 시스템)

  • 고종선;이태훈;김영일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.418-426
    • /
    • 2003
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the traveling difference. This method requires exact synchronous control of laser traveling in optic system to show a clear 3-dimensional image of retina To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a high speed and synchronous control of the galvanometer to make 3-dimensional retina image is presented. For the more, deadbeat load torque observer is added to the PI controller for compensation of the position error arisen in the high speed control. As a result, the proposed control system has a robust and precise response against the load torque variation appeared in high speed control. A stability and usefulness are verified by the computer simulation and the experiment.

Real-Time Hardware Simulator for Grid-Tied PMSG Wind Power System

  • Choy, Young-Do;Han, Byung-Moon;Lee, Jun-Young;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • This paper describes a real-time hardware simulator for a grid-tied Permanent Magnet Synchronous Generator (PMSG) wind power system, which consists of an anemometer, a data logger, a motor-generator set with vector drive, and a back-to-back power converter with a digital signal processor (DSP) controller. The anemometer measures real wind speed, and the data is sent to the data logger to calculate the turbine torque. The calculated torque is sent to the vector drive for the induction motor after it is scaled down to the rated simulator power. The motor generates the mechanical power for the PMSG, and the generated electrical power is connected to the grid through a back-to-back converter. The generator-side converter in a back-to-back converter operates in current control mode to track the maximum power point at the given wind speed. The grid-side converter operates to control the direct current link voltage and to correct the power factor. The developed simulator can be used to analyze various mechanical and electrical characteristics of a grid-tied PMSG wind power system. It can also be utilized to educate students or engineers on the operation of grid-tied PMSG wind power system.

Vector Control for the Rotor Resistance Compensation of Induction Motor (유도전동기 회전자 저항 보상을 위한 벡터제어)

  • Park, Hyun-Chul;Lee, Su-Woon;Kim, Yeong-Min;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

ACTIVE FAULT-TOLERANT CONTROL OF INDUCTION MOTOR DRIVES IN EV AND HEV AGAINST SENSOR FAILURES USING A FUZZY DECISION SYSTEM

  • Benbouzid, M.E.H.;Diallo, D.;Zeraoulia, M.;Zidani, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.729-739
    • /
    • 2006
  • This paper describes an active fault-tolerant control system for an induction motor drive that propels an Electrical Vehicle(EV) or a Hybrid one(HEV). The proposed system adaptively reorganizes itself in the event of sensor loss or sensor recovery to sustain the best control performance given the complement of remaining sensors. Moreover, the developed system takes into account the controller transition smoothness in terms of speed and torque transients. In this paper which is the sequel of (Diallo et al., 2004), we propose to introduce more advanced and intelligent control techniques to improve the global performance of the fault-tolerant drive for automotive applications(e.g. EVs or HEVs). In fact, two control techniques are chosen to illustrate the consistency of the proposed approach: sliding mode for encoder-based control; and fuzzy logics for sensorless control. Moreover, the system control reorganization is now managed by a fuzzy decision system to improve the transitions smoothness. Simulations tests, in terms of speed and torque responses, have been carried out on a 4-kW induction motor drive to evaluate the consistency and the performance of the proposed fault-tolerant control approach.

Optimal Posture Control for Unmanned Bicycle (무인자전거 최적자세제어)

  • Yang, Ji-Hyuk;Lee, Sang-Yong;Kim, Seuk-Yun;Lee, Young-Sam;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1006-1013
    • /
    • 2011
  • In this paper, we propose an optimal posture control law for an unmanned bicycle by deriving linear bicycle model from fully nonlinear differential equations. We calculate each equilibrium point of a bicycle under any given turning radius and angular speed of rear wheel. There is only one equilibrium point when a bicycle goes straight, while there are a lot of equilibrium points in case of turning. We present an optimal equilibrium point which makes the leaning input minimum when a bicycle is turning. As human riders give rolling torque by moving center of gravity of a body, many previous studies use a movable mass to move center of gravity like humans do. Instead we propose a propeller as a new leaning input which generates rolling torque. The propeller thrust input makes bicycle model simpler and removes input magnitude constraint unlike a movable mass. The proposed controller can hold optimal equilibrium points using both steering input and leaning input. The simulation results on linear control for circular motion are demonstrated to show the validity of the proposed approach.

A Study on the Optimal Design Fuzzy Type Stabilizing Controller using Genetic Algorithm (유전 알고리즘을 이용한 퍼지형 안전화 제어기의 최적 설계에 관한 연구)

  • Lee, Heung-Jae;Lim, Chan-Ho;Yoon, Byong-Gyu;Lim, Hwa-Young;Song, Ja-Youn
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1382-1387
    • /
    • 1999
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. So far fuzzy controllers have been applied to power system stabilizing controllers due to its excellent properties on the nonlinear systems. But the design process of fuzzy logic power system stabilizer requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents and optimal design method of the fuzzy logic stabilizer using the genetic algorithm. Non-symmetric membership functions are optimally tuned over an evaluation function. The present inputs of fuzzy stabilizer are torque angle error and the change of torque angle error without loss of generality. The coding method used in this paper is concatenated binary mapping. Each linguistic fuzzy variable, defined as the peak of a membership function, is assigned by the mapping from a minimum value to a maximum value using eight bits. The tournament selection and the elitism are used to keep the worthy individuals in the next generation. The proposed system is applied to the one-machine infinite-bus model of a power system, and the results showed a promising possibility.

  • PDF

Design and Analysis of a Modular Unit for Reconfiguration of the Structure (구조물의 가변성을 위한 모듈형 유닛의 설계 및 해석)

  • Yu, In-Whan;Lee, Bo-Hee;Song, Hyun-Son
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.122-131
    • /
    • 2011
  • In this paper, the design and analysis of a reconfigurable modular structure, which reforms itself according to the change of the environment and realize appropriate forms and motions, are dealt with. This modular is a free structure from the restrictions with constraints about fixed environment and has various forms and motions by combining units. The form of this unit has a shape of a square with 7 centimeters side each, and has a structure which can be combined in a chain-shape or a lattice-shape. Additionally, The structure has a mobility by being equipped with wheels so that it can be combined for itself. In this paper, all the wireless controllers, sensor system, and communicating method between modules according to module structures were suggested and transformation method to be transformed to shape of snakes, caterpillars were presented. Moreover, simulations for each method were performed to show the validity of the motions including motor torque analysis. All the motions suggested were realized and experimented, whereby the availability of the designed mechanism and algorithm was verified with the result of experiments.

Design of Sensorless Controller for Interior Permanent-Magnet BLDC Motor (영구 자석 매립형 BLDC Motor의 Sensorless 제어기 설계)

  • Kim, Hag-Wone;Yeum, Kwan-Ho;Cho, Kwan-Youl;Ahn, Jun-Ho;Shin, Hyoun-Jeong;Byun, Il-Soo;Kim, Jung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.299-301
    • /
    • 1996
  • Recently, as a result of the progress in power electronics and magnet technology, the applications of inverter fed BLDC Motor have increased for industry and home appliance. Also because of the high efficiency, good acoustic noise characteristic, BLDC Motor applications are growing. However, BLDC Motor requires position sensor, which has many problems such as high cost, more space and difficult to install. Therefore, sensorless control algorithm is being studied. In this paper, sensorless algorithm for interior permanent magnet BLOC motor adaptable for home appliance is proposed. The maximum torque per amp operation with advance angle considering load torque and speed was simulated and verified through the experiment.

  • PDF

The Extreme Low Speed Motor Observer and Brake Torque Control Technologies (극 저속 전동기용 관측기 및 제동 토크 제어 기술)

  • Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.363-368
    • /
    • 2013
  • This paper relates to the electric braking, the permanent magnet synchronous motor vector control is suspended until the applied, and propose a new scheme by the controller in the observer to estimate the position and velocity using the Resolver speed detector. In addition, as a way to control the speed by braking torque at low speed, the pole of a stop just before the stop electrical braking. As a result, noise and dust abatement, consumption, reduction of the brake shoe increase the maintainability of comfort and energy use, enhances the effect of EMU performance improved sikyeoteum could see.