• Title/Summary/Keyword: Torque controller

Search Result 988, Processing Time 0.026 seconds

Vibration Control a Flexible Single Link Robot Manipulator Using Neural Networks (신경회로망을 이용한 유연성 단일 링크 로봇 매니퓰레이터의 진동제어)

  • 탁한호;이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.3
    • /
    • pp.55-66
    • /
    • 1997
  • In this paper, applications of neural networks to vibration control of flexible single link robot manipulator are ocnsidered. The architecture of neural networks is a hidden layer, which is comprised of self-recurrent one. Tow neural networks are utilized in a control system ; one as an identifier is called neuro identifier and the othe ra s a controller is called neuro controller. The neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by dynamic error-backpropagation algorithm(DEA). To guarantee concegence and to get faster learning, an approach that uses adaptive learning rates is developed by introducing a Lyapunov function. When a flexible manipulator is ratated by a motor through the fixed end, transverse vibration may occur. The motor torque should be controlle dinsuch as way, that the motor is rotated by a specified angle. while simulataneously stabilizing vibration of the flexible manipulators so that it is arrested as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large body motions, as well as the flexural vibrations. Therefore, dynamic models for a flexible single link manipulator is derived, and LQR controller and nerual networks controller are composed. The effectiveness of the proposed nerual networks control system is confirmed by experiments.

  • PDF

The Development of Velocity Ripple Controller Using Active Phase Compensation (능동형 위상보정을 이용한 정밀 속도리플 제어기의 개발)

  • Kang, Seok Il;Jeong, Jae Hyeon;Kim, Jung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.265-272
    • /
    • 2017
  • Velocity ripple in manufacturing processes reduces productivity and limits the precision of the product. In practice, the frequency and phase of velocity ripples always change minutely, which makes it impossible to compensate for the ripple by simply inserting an opposite feed-forward signal in the system. In this study, an active-phase compensation algorithm was developed to enable the velocity-ripple controller to track the phase change of the ripples in real time. The proposed controller can compensate for the velocity ripple whatever its cause, including disturbance by the torque ripple. The algorithm consists of three functional modules: the velocity-ripple extractor, the synchronized integrator, and the phase shifter. Experimental results showed that the proposed controller clearly reduces velocity ripples with phase variation.

A Simulator for a Performance Test of HEVs (하이브리드 자동차 성능 시뮬레이터)

  • Zheng, Chun-Hua;Kim, Nam-Wook;Lee, Dae-Heung;Lim, Won-Sik;Park, Yoeng-Il;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.353-356
    • /
    • 2008
  • HEV(Hybrid Electrical Vehicle) is considered as one of the next generation vehicles. To develop the HEV, there must be a reliable simulator, by which the capacities of the power resources are tested, and the parameters of the HEV are optimized before developing the real model of the HEVs. This process can save the money for designing the HEV system and improve the system without experiments. Matlab Simulink is familiar to mechanical engineers and the program can simultaneously provide a system model and a controller in one program. Nowadays, the Simdriveline toolbox which is used for analysis a power-train system is applied to build a dynamic model for a HEV system. In this study, we make a HEV simulator with the Simdriveline toolbox and develop a controller. There are two simple strategies, applied to the controller. One strategy includes a power split ratio and a shift map which are created by user. Other strategy calculated an appropriate amount of resource's torque along specific results, and this is useful when users can't develop a fitting controller. The methodologies for configuring the simulator and its control system are presented in this paper.

  • PDF

Design of Adaptive Controller for Efficiency Optimization of Induction Motors (유도전동기 효율의 최적화를 위한 적응제어기 설계)

  • Hwang, Young-Ho;Park, Ki-Kwang;Shin, In-Sub;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.293-294
    • /
    • 2007
  • This paper addresses the adaptive controller for efficiency optimization of induction motors. The paper describes an adaptive controller based on-line efficiency optimization control of a drive that uses a direct vector controlled induction motors. To improve the efficiency of the induction motors, it is important to find the optimal flux reference that minimize power loss. The proposed optimal flux reference is derived using a power loss function that is constructed with stator resistance losses, rotor resistance losses and core losses. The proposed sliding mode flux observer generates estimates the unmeasured rotor fluxes. An optimal efficiency controller has goal of maximizing the efficiency for a given speed and load torque. A simulation shows the effectiveness of the proposed technique.

  • PDF

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.

Development of Electronic Opening and Shutting Device for One-Ton Wing-Body Truck

  • Han, Jong-Soo;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.565-569
    • /
    • 2004
  • The wing-body trucks are special vehicles that are designed to provide large carrying space and to protect the freights from outside impacts and bad weather. They are constructed to the structure opening and shutting three-layered aluminum top. In the middle- and large-size(above one-ton) wing-body trucks, wing-body is opened/closed by opening and shutting device of oil pressure type. But one-ton truck is constructed that its wing-body is opened/closed in manual to use helping of stay-dampers. So, we developed an electronic opening and shutting device for one-ton wing-body trucks to improve the inconvenience of usage for manually operated wing-body. The developed device is consisted of two connected links and a dc motor combined with an worm gear. The worm gear changes the rotation axis of the dc motor to a right-angled direction and transfers the torque of dc motor to the links. The two connected links open/shut the wing-body using the torque transferred from the dc motor. When the wing-body starts to be opened, the biggest torque is required from the dc motor for opening the wing-body. And as the wing-body is opened more and more, the required torque is smaller for opening the wing-body. Thus, the structure of two connected links are designed to locate at the center of worm gear so that maximum torque of the dc motor is transferred the links at the initial time starting to open wing-body. The controller of the device with open and closed buttons also is designed to protect the device from over-opening and over shutting operations. The developed device is accomplished for many experiments using actual vehicle. Those experiments show that the device has more excellent performance than the oil pressure type.

  • PDF

Improvement of Control Performance of PMSM in the low Speed Range (영구자석형 동기전동기의 저속도 영역에서 제어 성능 개선)

  • Won, Chung-Yuen;Yu, Jae-Sung;Jun, Bum-Su;Hwang, Sun-Mo;Kim, Yuen-Chung;Lee, Song-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.70-79
    • /
    • 2005
  • In this paper, improvement method of control performance by a full-order observer using reduced-order state equation is proposed in the low speed range. Full-order observer using reduced-order state equation is the motor speed and the disturbance torque observer. The proposed algorithm is very stable in the low speed range about 1.9[rpm]. The disturbance torque in the motor drive system degrades speed control performance in the low speed range. The proposed algorithm estimated both motor speed and disturbance torque. The estimated disturbance torque is used as a feedforward value in output of the speed controller, As a result, it improves the response of load torque in the low speed range(1.9rpm).

Zero Torque Control of Switched Reluctance Motor for Integral Charging (충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어)

  • Rashidi, A.;Namazi, M.M;Saghaian, S.M.;Lee, D.H.;Ahn, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

A Torque Ripple Reduction of Miniature BLDC using Instantaneous Voltage Control (초고속 소형 BLDC의 순시 전압 제어에 의한 토크 리플 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.191-198
    • /
    • 2007
  • This paper proposes the instantaneous source voltage and phase current control for torque ripple reduction of a high speed miniature BLDC motor. As compared with general BLDC motor, a high speed miniature BLDC motor has a fast electrical time-constant. So the current and torque ripple are very serious in a conventional PWM switching during conduction period. In order to reduce the switching current ripple, instantaneously controlled source voltage is supplied to the inverter system according to the motor speed and load torque. In addition, the fast hysteresis current controller can keep the phase current In the limited band. The proposed method is verified by the computer simulation and experimental results.

Strength analysis of the driving shift gears for a 67 kW class agricultural tractor according to tire type

  • Baek, Seung Min;Kim, Wan Soo;Kim, Yeon Soo;Baek, Seung Yun;Lee, Nam Gyu;Moon, Seok Pyo;Jeon, Hyeon Ho;Choi, Young Soo;Kim, Taek Jin;Kim, Yong Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1147-1158
    • /
    • 2020
  • The purpose of this study was to measure the engine torque and rotational speed of a 67 kW class agricultural tractor according to tire type during plow tillage and to analyze the gear strength of the driving shift for the tractor. A field test was performed under the condition with a single tire (Test A) and dual tires (Test B) to increase the ground width of the rear tires. A load monitoring system was developed, and the engine torque and rotational speed were measured using controller area network (CAN) communication. The engine torque and rotational speed during plow tillage were calculated as the equivalent torque and speed using Palmgren Miner's rule. As a result, the equivalent torque and speed in Test A and Test B were 181.0 Nm and 1,913 rpm and 206.1 Nm and 2,130 rpm, respectively. As the ground width of the rear tire was increased, the bending stress in Test B was about 9.9 to 10.5% higher than that of the Test A, and the contact stress was about 4.6 to 4.9% higher than that of the Test A. Under all conditions, the safety factor for the bending and contact stress was 1 or more. Thus, the driving shift gears for the dual tire type are considered safe.