• 제목/요약/키워드: Torque controller

검색결과 988건 처리시간 0.023초

망막의 3차원 영상화를 위한 데드비트 외란 관측기를 가진 고속, 고강성 제어 시스템 (High Speed and Robust Control System with Deadbeat Disturbance Observer for 3D Eye Imaging Equipment)

  • 고종선;이태훈;김영일
    • 전력전자학회논문지
    • /
    • 제8권5호
    • /
    • pp.418-426
    • /
    • 2003
  • 컴퓨터 모니터를 통해 안구망막의 형태와 두께를 보기 위해서 레이저의 경로차를 이용하는 SLO 장비가 사용되고 있다. 이러한 방법으로 망막의 선명한 3차원 영상을 보기 위해서는 레이저 광경로 시스템의 정확한 동기제어가 필요하다. 이 영상을 얼기 위해서는 평면주사를 하는데 있어서 정밀동기제어가 매우 중요하다. 본 논문에서는 안구의 3차원 영상을 만들기 위해 고속 동기제어를 구현한다. 또한 고속 제어시 부하 관성에 의해 발생하는 위치 응답의 오차를 보상하기 위해서 기존 PI(Proportional-Integral) 제어기에 데드비트 외란 관측기를 추가한다. 제안된 제어시스템은 고속 제어시 발생하는 토크 변화에 강인하고 정밀한 시스템이 된다. 이상의 제안된 시스템의 안정성과 유용함이 컴퓨터 시뮬레이션과 실험을 통하여 확인되었다.

Real-Time Hardware Simulator for Grid-Tied PMSG Wind Power System

  • Choy, Young-Do;Han, Byung-Moon;Lee, Jun-Young;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.375-383
    • /
    • 2011
  • This paper describes a real-time hardware simulator for a grid-tied Permanent Magnet Synchronous Generator (PMSG) wind power system, which consists of an anemometer, a data logger, a motor-generator set with vector drive, and a back-to-back power converter with a digital signal processor (DSP) controller. The anemometer measures real wind speed, and the data is sent to the data logger to calculate the turbine torque. The calculated torque is sent to the vector drive for the induction motor after it is scaled down to the rated simulator power. The motor generates the mechanical power for the PMSG, and the generated electrical power is connected to the grid through a back-to-back converter. The generator-side converter in a back-to-back converter operates in current control mode to track the maximum power point at the given wind speed. The grid-side converter operates to control the direct current link voltage and to correct the power factor. The developed simulator can be used to analyze various mechanical and electrical characteristics of a grid-tied PMSG wind power system. It can also be utilized to educate students or engineers on the operation of grid-tied PMSG wind power system.

유도전동기 회전자 저항 보상을 위한 벡터제어 (Vector Control for the Rotor Resistance Compensation of Induction Motor)

  • 박현철;이수원;김영민;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화 (An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem)

  • 이건영;권만오
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권8호
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

ACTIVE FAULT-TOLERANT CONTROL OF INDUCTION MOTOR DRIVES IN EV AND HEV AGAINST SENSOR FAILURES USING A FUZZY DECISION SYSTEM

  • Benbouzid, M.E.H.;Diallo, D.;Zeraoulia, M.;Zidani, F.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.729-739
    • /
    • 2006
  • This paper describes an active fault-tolerant control system for an induction motor drive that propels an Electrical Vehicle(EV) or a Hybrid one(HEV). The proposed system adaptively reorganizes itself in the event of sensor loss or sensor recovery to sustain the best control performance given the complement of remaining sensors. Moreover, the developed system takes into account the controller transition smoothness in terms of speed and torque transients. In this paper which is the sequel of (Diallo et al., 2004), we propose to introduce more advanced and intelligent control techniques to improve the global performance of the fault-tolerant drive for automotive applications(e.g. EVs or HEVs). In fact, two control techniques are chosen to illustrate the consistency of the proposed approach: sliding mode for encoder-based control; and fuzzy logics for sensorless control. Moreover, the system control reorganization is now managed by a fuzzy decision system to improve the transitions smoothness. Simulations tests, in terms of speed and torque responses, have been carried out on a 4-kW induction motor drive to evaluate the consistency and the performance of the proposed fault-tolerant control approach.

무인자전거 최적자세제어 (Optimal Posture Control for Unmanned Bicycle)

  • 양지혁;이상용;김석윤;이영삼;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1006-1013
    • /
    • 2011
  • In this paper, we propose an optimal posture control law for an unmanned bicycle by deriving linear bicycle model from fully nonlinear differential equations. We calculate each equilibrium point of a bicycle under any given turning radius and angular speed of rear wheel. There is only one equilibrium point when a bicycle goes straight, while there are a lot of equilibrium points in case of turning. We present an optimal equilibrium point which makes the leaning input minimum when a bicycle is turning. As human riders give rolling torque by moving center of gravity of a body, many previous studies use a movable mass to move center of gravity like humans do. Instead we propose a propeller as a new leaning input which generates rolling torque. The propeller thrust input makes bicycle model simpler and removes input magnitude constraint unlike a movable mass. The proposed controller can hold optimal equilibrium points using both steering input and leaning input. The simulation results on linear control for circular motion are demonstrated to show the validity of the proposed approach.

유전 알고리즘을 이용한 퍼지형 안전화 제어기의 최적 설계에 관한 연구 (A Study on the Optimal Design Fuzzy Type Stabilizing Controller using Genetic Algorithm)

  • 이흥재;임찬호;윤병규;임화영;송자윤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1382-1387
    • /
    • 1999
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. So far fuzzy controllers have been applied to power system stabilizing controllers due to its excellent properties on the nonlinear systems. But the design process of fuzzy logic power system stabilizer requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents and optimal design method of the fuzzy logic stabilizer using the genetic algorithm. Non-symmetric membership functions are optimally tuned over an evaluation function. The present inputs of fuzzy stabilizer are torque angle error and the change of torque angle error without loss of generality. The coding method used in this paper is concatenated binary mapping. Each linguistic fuzzy variable, defined as the peak of a membership function, is assigned by the mapping from a minimum value to a maximum value using eight bits. The tournament selection and the elitism are used to keep the worthy individuals in the next generation. The proposed system is applied to the one-machine infinite-bus model of a power system, and the results showed a promising possibility.

  • PDF

구조물의 가변성을 위한 모듈형 유닛의 설계 및 해석 (Design and Analysis of a Modular Unit for Reconfiguration of the Structure)

  • 유인환;이보희;송현선
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.122-131
    • /
    • 2011
  • In this paper, the design and analysis of a reconfigurable modular structure, which reforms itself according to the change of the environment and realize appropriate forms and motions, are dealt with. This modular is a free structure from the restrictions with constraints about fixed environment and has various forms and motions by combining units. The form of this unit has a shape of a square with 7 centimeters side each, and has a structure which can be combined in a chain-shape or a lattice-shape. Additionally, The structure has a mobility by being equipped with wheels so that it can be combined for itself. In this paper, all the wireless controllers, sensor system, and communicating method between modules according to module structures were suggested and transformation method to be transformed to shape of snakes, caterpillars were presented. Moreover, simulations for each method were performed to show the validity of the motions including motor torque analysis. All the motions suggested were realized and experimented, whereby the availability of the designed mechanism and algorithm was verified with the result of experiments.

영구 자석 매립형 BLDC Motor의 Sensorless 제어기 설계 (Design of Sensorless Controller for Interior Permanent-Magnet BLDC Motor)

  • 김학원;염관호;조관열;안준호;신현정;변일수;김정철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.299-301
    • /
    • 1996
  • Recently, as a result of the progress in power electronics and magnet technology, the applications of inverter fed BLDC Motor have increased for industry and home appliance. Also because of the high efficiency, good acoustic noise characteristic, BLDC Motor applications are growing. However, BLDC Motor requires position sensor, which has many problems such as high cost, more space and difficult to install. Therefore, sensorless control algorithm is being studied. In this paper, sensorless algorithm for interior permanent magnet BLOC motor adaptable for home appliance is proposed. The maximum torque per amp operation with advance angle considering load torque and speed was simulated and verified through the experiment.

  • PDF

극 저속 전동기용 관측기 및 제동 토크 제어 기술 (The Extreme Low Speed Motor Observer and Brake Torque Control Technologies)

  • 김영춘
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.363-368
    • /
    • 2013
  • 영구자석형 동기전동기에 벡터제어를 적용하여 정지시까지 전기제동을 하였으며, 속도검출기는 레졸바를 사용하여 제어기에서 관측자에 의한 위치와 속도를 추정하는 방식을 제안하였다. 또한, 정지직전의 극저속에서 속도에 의한 제동 토오크를 제어하는 방법으로 정지시까지 전기제동을 하였다. 그 결과 제륜자의 소모율 저감과 유지보수성을 증대시키고 소음 및 분진발생의 저감, 승차감과 에너지 사용효과를 향상시켜 전동차의 성능을 향상 시켰음을 알 수 있었다.