• Title/Summary/Keyword: Torque controller

Search Result 988, Processing Time 0.032 seconds

Rotor Time Costant Compensation for Vector-Controlled IM with DC Current Injection Method (직류전류 주입법에 의한 벡터제어 유도전동기의 회전자 시정수 보상)

  • Lee, K.J.;Nam, H.T.;Choi, J.W.;Kim, H.G.;Lee, D.K.;Chun, T.W.;Nho, E.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.285-287
    • /
    • 2001
  • To obtain a high performance in a vector controlled induction machine, it is essential to know the instantaneous position of the rotor flux which depends on the rotor time constant. But the rotor time constant mainly varies due to the temperature rise in the motor winding, so real time compensating algorithm is necessary. This paper proposes that it uses short duration pulses added to the constant flux command current and then resultant torque command current produced by speed controller is utilized for the rotor resistance estimation. This method has advantages with a low computational requirement and does not require voltage sensors. The proposed method is proved by simulations.

  • PDF

Robust Direct Vector Control of Induction Motor for Variation of stator Resistance (고정자 저항의 변동에 강인한 유도전동기의 직접 벡터제어)

  • Jung, Jong-Jin;Kim, Jin-Kyu;Lee, Deuk-Kee;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2002-2004
    • /
    • 1998
  • In this paper, the compensation algorithm of the stator resistance which is essential to improving the performance of the direct vector control system is proposed. This paper focuses on the improvement in the torque response of the direct vector control in a constant speed region. The conventional compensation algorithms are analyzed and a new method is developed to compensate the stator resistance in the direct vector control system. In addition, the effect of the variation of the stator resistance on the drive performance is analyzed for the vector control. The proposed algorithm is very simple to implement that does not require the modifications on the motor model or additional interrupts of the controller. Also, the value of the stator resistance can be obtained in real-time through the measurement of the terminal voltage and current. From the simulation and experimental results, the validity of the proposed scheme is confirmed.

  • PDF

A systematic review of the complications of single implant-supported restorations (단일 임플란트지지 보철물의 후유증에 관한 체계적 연구)

  • Chang, Moon-Taek
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.925-938
    • /
    • 2006
  • The aim of this study was to systematically investigate the complications of single implant-supported restorations followed more than 5-year. Thirty-five studies were selected for the systematic review. A total of 3932 single implants were included at the beginning of studies. Thirty-one implants were removed before loading and 91 implants after loading. The overall implant loss rate was 3.1 %. Implant losses were concentrated on the period between loading and 2-year follow-up, and, after a stable period, increased after 5-year follow-up. The mean marginal bone loss at single-tooth implants was well within 0.2 mm/year, i.e., acceptable annual bone loss by the implant success criteria. However, considerable amounts of single implants suffered a marginal bone loss at implant more than 0.2 mm/year. Fistula was a frequent biological complication in the early studies. The most frequent technical problem was a screw loosening, but its frequency was reduced after the use of a gold screw and torque controller. Within the limits of this study, the complications of single implants might be underestimated due to the lack of information about the biological and technical complications available in the relevant literature.

Development of Walking Assistant Controller for Patients with Weakness in Cardiopulmonary System (심폐기능 허약자를 위한 보행보조장치 제어기 개발)

  • Kang, S.J.;Kim, G.S.;P, S.H.;Mun, M.S.;Sei, S.W.;Kim, J.K.;Ryu, J.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • Case of patients with weakness in cardiopulmonary system, other ambulatory function is normal, but oxygen supply function is problem. So they need reduce energy consumption for gait by assistance system. In this study, we designed and developed walking assistant device which helps flexion and extension of hip joint for cardiopulmonary patients. There are two motors, each at the left and right side of pelvis, providing torque to the hip joint. The target angle of the flexion and extension in the hip joint is set according to the normal gait. As a result, reduction of energy consumption was 14.8% by gait assistive device.

Rotor Time Constant Compensation for Vector-Controlled Induction Motor with DC Current Injection Method (직류전류 주입법에 의한 벡터제어 유도전동기의 회전자 시정수 보상)

  • Lee, Gyeong-Ju;Lee, Deuk-Gi;Jeong, Jong-Jin;Choe, Jong-U;Kim, Heung-Geun;No, Ui-Cheol;Jeon, Tae-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.69-76
    • /
    • 2002
  • To obtain a high performance in a vector controlled induction motor, it is essential to know the instantaneous position of the rotor flux which depends on the rotor time constant. But the rotor time constant mainly varies due to the temperature rise in the motor winding, so real time compensating algorithm is necessary. This paper proposes that it uses short duration pulses added to the constant flux command current and then resultant torque command current produced by speed controller is utilized for the rotor resistance estimation. This method has advantage with a low computational requirement and does not require voltage sensors. The proposed method is proved by simulations and experimentals.

Simple Al Robust Digital Position Control of PMSM using Neural Network Compensator (신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어)

  • Ko, Jong-Sun;Youn, Sung-Koo;Lee, Tae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.557-564
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system can be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. In addition, the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Signal Processor DS1102 Board (TMS320C31).

  • PDF

A New Approach to Improve Induction Motor Performance in Light-Load Conditions

  • Hesari, Sadegh;Hoseini, Aghil
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1195-1202
    • /
    • 2017
  • Induction motors often reach their maximum efficiency at the nominal load. In most applications, the machine load is not equal to the nominal load, thus reduces the motor efficiency and turns a greater percent of power into loss. In this paper, the induction motor control problem has been investigated to reduce the system losses. The Field Oriented Control method (FOC) has been employed in this paper. In this research, the mathematical equations related to system losses are calculated in relation to torque and speed, and then the q- and d-axis are summarized according to the current components. After that, the proposed method is applied along with d- and q-axis. In the recent three decades, many techniques have been suggested to improve the induction motor performance using smart and non-smart methods. In this paper, a new PSO-Fuzzy method have used in real time. The fuzzy logic method serves as speed controller in q-axis and PSO algorithm controls the optimum flux in d-axis. It will be proved that the use of this combined method will lead to a significant improvement in motor efficiency.

Performance Evaluation of Regenerative Braking System Based on a HESS in Extended Range BEV

  • Kiddee, Kunagone;Khan-Ngern, Werachet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1965-1977
    • /
    • 2018
  • This paper proposed a regenerative braking system (RBS) strategy for battery electric vehicles (BEVs) with a hybrid energy storage system (HESS) driven by a brushless DC (BLDC) motor. In the regenerative braking mode of BEV, the BLDC motor works as a generator. Consequently, the DC-link voltage is boosted and regenerative braking energy is transferred to a battery and/or ultracapacitor (UC) using a suitable switching pattern of the three-phase inverter. The energy stored in the HESS through reverse current flow can be exploited to improve acceleration and maintain the batteries from frequent deep discharging during high power mode. In addition, the artificial neural network (ANN)-based RBS control mechanism was utilized to optimize the switching scheme of the vehicular breaking force distribution. Furthermore, constant torque braking can be regulated using a PI controller. Different simulation and experiments were implemented and carried out to verify the performance of the proposed RBS strategy. The UC/battery RBS also contributed to improved vehicle acceleration and extended range BEVs.

A Fuzzy-Neural Control for Uncertainty Compensation of Robot Manipulator (로봇 매니퓰레이터의 불확실성 보상을 위한 퍼지­-뉴로 제어)

  • 박세준;양승혁;황문구;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1759-1766
    • /
    • 2003
  • This paper proposes a neuro­fuzzy controllers for trajectory tracking control of robot manipulators. The computed torque method is an effective means for trajectory tracking control. However, the tracking performance of this method is severely affected by the uncertainties of robot manipulators. Therefore, the proposed controller is used to compensate the uncertainties of robot manipulators. In the neuro­fuzzy controllers, the number of fuzzy rules used forty­nine. The effectiveness of the proposed controllers is demonstrated by computer simulations using two­link robot manipulator, As a result, it is confirmed that the output of the proposed neuro­fuzzy controllers can efficiently decrease the uncertainties of robot manipulator.

Position Control for AC Servo Motor Using a Sliding Mode Control (슬라이딩 모드제어에 의한 교류 서보 전동기의 위치제어에 관한 연구)

  • 홍정표;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • The dynamic model of ac servo motor is influenced very much due to rotor resistance change and nonlinear characteristic. By using the sliding mode control the dynamic behavior of system can be made insensitive to plant parameter change and external disturbance. This paper describes the application of the sliding mode control for position control of ac servo motor. The control scheme is derived and designed. A design method based on external load parameters has been developed for the robust control of ac induction servo drive. The proposed control scheme are given based on the variable structure controller and slip frequency vector control. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft initial J, viscous friction B and torque disturbance.

  • PDF