• Title/Summary/Keyword: Torque angle Control

검색결과 311건 처리시간 0.025초

Control Mode Switching of Induction Machine Drives between Vector Control and V/f Control in Overmodulation Range

  • Nguyen, Thanh Hai;Van, Tan Luong;Lee, Dong-Choon;Park, Joo-Hong;Hwang, Joon-Hyeon
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.846-855
    • /
    • 2011
  • This paper proposes a control mode switching scheme between vector control and constant V/f control for induction machine (IM) drives for maximum torque utilization in a higher speed region. For the constant V/f scheme, a smooth transition method from the linear range of PWM up to the six-step mode is applied, by which the machine flux and torque can be kept constant in a high-speed range. Also, a careful consideration of the initial phase angle of the voltage in the transient state of the control mode change between the vector control and V/f schemes is described. The validity of the proposed strategy is verified by the experiment result for a 3-kW induction motor drives.

A New Fuzzy Logic based Modeling and Simulation of a Switched Reluctance Motor

  • Wadnerkar, Vikas S.;Bhaskar, Mithun M.;Das, Tulasi Ram;RajKumar, A.D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.276-281
    • /
    • 2010
  • The switched reluctance motor (SRM) is an older member of the electric machines family. Its simple structure, ruggedness and inexpensive manufacturing potential make it extremely attractive for industrial applications. However, these merits are overshadowed by its inherent high torque ripple, acoustic noise and difficulty to control. In this paper, a control strategy of the angle position control for the SRM drive based on fuzzy logic is illustrated. The input control parameter, the output control parameter and fuzzy control with FAM table formulation strategy are described and simulated with control patterns, and the decision form of the fuzzy control is illustrated and simulated, and the scope of implementing in a Fuzzy based ASIC chip is enlightened with literature support.

천정크레인 부하의 위치 및 흔들림 제어 (Position and swing angle control for loads of overhead cranes)

  • 이호훈;조성근
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

직접 토크제어에 의한 유도전동기의 위치제어 시스템 (An Induction Motor Motion Control System with Direct Torque Control)

  • 김남훈;김민호;김동희;김민회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1036-1038
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of induction motor vector drives with a direct torque control(DTC) using the 16bit DSP TMS 320F240. The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent controllers for induction motors which can be yield enhanced operation, fewer system components, lower system cost, increased efficiency and high performance. The system presented are stator flux observer of current model that inputs are current sensing of motor terminal and rotor angle, and optimal switching look-up table by using fully integrated control software. The developed system are shown a good motion control response characteristic results and high performance features using 2.2Kw general purposed induction motor.

  • PDF

센서리스 제어 기법에 의해 보완된 두 개의 구형파 홀센서를 이용한 PMSM 제어 알고리즘 (Control Algorithm for PMSM using Rectangular Two Hall Sensors Compensated by Sensorless Control Method)

  • 이정효;이택기;김영렬;원충연
    • 조명전기설비학회논문지
    • /
    • 제26권5호
    • /
    • pp.40-47
    • /
    • 2012
  • The PMSM position sensor using two rectangular hall sensors can restrictively acquire the 90[$^{\circ}$] position information of rotor according to electrical angle. Thus, the control method using this position sensor cannot react properly to a rapid load torque change. On the other hand, even though a sensorless method has the advantage of acquiring instantaneous rotor position information, the accuracy of position sensor can be determined by the gain value of estimator. This paper suggests a robust speed control method on torque fluctuation condition, which combines low cost two rectangular hall sensors and sensorless control method.

독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상 (Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving)

  • 장재호;김창준;김상호;강민성;백성훈;김영수;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.

PLL을 이용한 SRM의 동기화 강화에 대한 연구 (Study on Strengthened Synchronism of SRM Using a PLL)

  • 오석규;이성두;안진우;황영문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.403-405
    • /
    • 1996
  • This paper suggestes a SRM drive scheme which include power angle control like synchronous machine and a Phase Locked LooP(PLL) control. The power angle control scheme regulates instantly dwell angle as load torque variation, but this is some disadvantages which are losing of synchronism and hunting when load changes abruptly. To increasing synchronism, the Phase Locked Loop control scheme is adopted.

  • PDF

2MW급 풍력발전용 블레이드 피치 제어 시스템 개발 (Development of pitch control system for 2WM wind turbine)

  • Choi, Hee-young;Ryu, Ji-su;Lee, Sang-ho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.285-286
    • /
    • 2011
  • Wind turbine system is converting wind energy into electric energy. In nature, torque of the blade is nonlinear function. To get a high quality electric power, system needs control of blade angle. The control of a blade is divided into a stall regulation type and a pitch control type. Pitch control type is more expensive and complicated, but it can make torque of the blade in accordance with variable wind. This paper shows 2MW pitch control system's hardware and electric part.

  • PDF

매입형 영구자석 동기전동기의 고성능 약계자 제어 (The High Performance Flux Weakening Control of Interior Permanent Magnet Synchronous Motor)

  • 이중호;김장목;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1051-1053
    • /
    • 1993
  • In this paper, the new flux weakening contol algorithm for the drive system of Interior Permanent Magnet Synchronous Motor(IPMSM) is proposed which includes the feedback of torque and current The torque error is used in order to control the current phase angle in the field weakening control. The proposed control method is compared with the stator flux oriented vector control method. Through the simulation the prominence of the proposed control method is verified.

  • PDF

앞선각 제어를 위한 단상 SRM 회전자설계 (Rotor Design of Single Phase Switched Reluctance Motor for Advance Angle Control)

  • 오주환;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.92-94
    • /
    • 2006
  • Single phase switched reluctance motor has a high speed capability, due to its very robust rotor, and requires only one electronic power switch in its control circuitry. The latter feature considerably reduces the cost of the drive system. But it involves starting problem and strongly torque ripple, which means that the motor is not suitable for application that require constant torque or speed. To solve torque ripple and region of these problem, this paper presents a single phase Switched Reluctance Motor model with a barrier rotor pole. Also it is simulated the designed prototype model by FEM for the prediction of characteristics.

  • PDF