• Title/Summary/Keyword: Torque Monitoring

Search Result 103, Processing Time 0.019 seconds

A Study on the Effect of Macro-geometry and Gear Quality on Gear Transmission Error (기어 제원 및 기어 가공정밀도가 기어 전달오차에 미치는 영향에 대한 연구)

  • Lee, Ju-Yeon;Moon, Sang-Gon;Moon, Seok-Pyo;Kim, Su-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.36-42
    • /
    • 2021
  • This study was conducted to analyze the effect of the gear specification and gear quality corresponding to the macro geometry on the gear transmission error. The two pairs of gears with large and small transmission errors were selected for calculation, and two pairs of gears were manufactured with different gear quality. The test gears were manufactured by two different gear specifications with ISO 5 and 8 gear quality, respectively. The transmission error measurement system consists of an input motor, reducer, encoders, gearbox, torque meter, and powder brake. To confirm the repeatability of the test results, repeatability was confirmed by performing three repetitions under all conditions, and the average value was used to compare the transmission error results. The transmission errors of the gears were analyzed and compared with the test results. When the gear quality was high, the transmission error was generally low depending on the load, and the load at which the decreasing transmission error phenomenon was completed was also lower. Even when the design transmission error according to the gear specification was different, the difference of the minimum transmission error was not large. The transmission error at the load larger than the minimum transmission error load increased to a slope similar to the slope of the analysis result.

Reverse Total Shoulder Arthroplasty: Where we are? "Principles" (견관절 역행성 인공관절 치환술의 원칙)

  • Noh, Kyu-Cheol;Suh, Il-Woo
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.105-110
    • /
    • 2011
  • Purpose: The purpose of this article is to identify and understand the complications of RTSA and to review the current methods of preventing and treating this malady. Materials and Methods: Previous constrained prostheses (ball-and-socket or reverse ball-and-socket designs) have failed because their center of rotation remained lateral to the scapula, which has limited of the motion of the prostheses and produced excessive torque on the glenoid component, and this leads to early loosening. The Grammont reverse prosthesis imposes a new biomechanical environment for the deltoid muscle to act, thus allowing it to compensate for the deficient rotator cuff muscles. Results: The clinical experience does live up to the lofty biomechanical concept and expectations: the reverse prosthesis restores active elevation above $90^{\circ}$ in patients with a cuff-deficient shoulder. However, external rotation often remains limited and particularly in patients with an absent or fat-infiltrated teres minor. Internal rotation is also rarely restored after a reverse prosthesis. Failure to restore sufficient tension in the deltoid may result in prosthetic instability. Conclusion: Finally, surgeons must be aware that the results are less predictable and the complication/revision rates are higher in revision surgery than that in the first surgery. A standardized monitoring tool that has clear definitions and assessment instructions is surely needed to document and then prevent complications after revision surgery.

Analysis of the Risk of Heat Generation due to Bolt Loosening in Terminal Block Connector Parts (볼트풀림에 의한 터미널 블록의 접속부 발열 위험성 분석)

  • Yeon, Yeong-Mo;Kim, Seung-Hee
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • In this study, the risk of heat generation due to normal and overload currents that vary with the abnormal loosening angle of wire-connecting bolts were identified. The risks were analyzed based on the thermal characteristics to minimize the carbonization accidents of terminal blocks inside distribution panels typically used in industrial sites. We applied a method for measuring the heating temperature and temperature variations in the terminal blocks in real-time by installing a resistance temperature detector sensor board in the terminal block. The experimental results showed that the terminal block model with a low-rated current exhibited a higher heating temperature, thus, confirming the need to select the terminal block capacity based on load currents. Additionally, the higher the rated current of the terminal block with a high-rated current and the higher the degree of loosening, the faster the carbonization point. Such heating temperature monitoring enabled real-time thermal temperature measurement and a step-by-step risk level setting through thermal analysis. The results of the measurement and analysis of carbonization risks can provide a theoretical basis for further research regarding the risk of fire due to carbonization. Furthermore, the deterioration measurement method using the temperature sensor board developed in this study is widely applicable to prevent fires caused by poor electrical contact as well as risk-level management.