• Title/Summary/Keyword: Torque Estimator

Search Result 104, Processing Time 0.032 seconds

Fuzzy Logic Slip Control of Torque Converter Clutch System for Passenger Car Considering Road Grade Resistance (노면 경사부하를 고려한 승용차용 토크컨버터 클러치 시스템의 퍼지 슬립 제어)

  • Han, Jin-O;Sin, Byeong-Gwan;Jo, Han-Sang;Lee, Gyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.718-727
    • /
    • 2000
  • Nowadays, most passenger cars equipped with automatic transmissions use torque converter clutches to reduce fuel consumption, and recently the slip control scheme of torque converter clutches is widely studied for the expansion of the operating region of torque converter clutches and thus for the further improvement of the fuel economy of vehicles. In this study, the analysis of the torque converter clutch system including the line pressure control unit of the automatic transmission and the actuating hydraulic control unit of the torque converter clutch is performed, and a feedforward controller and a fuzzy logic controller for its slip control are proposed. Also, for the slip controller to use the grade resistance information during control, an observer-based grade resistance estimator is designed. The performance of the designed grade resistance estimator and the slip controller is verified by dynamic simulations, and the effect of the torque converter clutch slip control on the fuel economy is examined using a driving cycle simulation.

Direct Torque Control Strategy (DTC) Based on Fuzzy Logic Controller for a Permanent Magnet Synchronous Machine Drive

  • Tlemcani, A.;Bouchhida, O.;Benmansour, K.;Boudana, D.;Boucherit, M.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.66-78
    • /
    • 2009
  • This paper introduces the design of a fuzzy logic controller in conjunction with direct torque control strategy for a Permanent Magnet synchronous machine. A stator flux angle mapping technique is proposed to reduce significantly the size of the rule base to a great extent so that the fuzzy reasoning speed increases. Also, a fuzzy resistance estimator is developed to estimate the change in the stator resistance. The change in the steady state value of stator current for a constant torque and flux reference is used to change the value of stator resistance used by the controller to match the machine resistance.

Current Model based SPMSM Sensorless Vector Control using Back Electro Motive Force Estimator (역기전력 추정기를 이용한 전류 모델 기반의 SPMSM 센서리스 벡터제어)

  • Lee, Jung-Hyo;Yu, Jae-Sung;Kong, Tae-Woong;Lee, Won-Chul;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.7-10
    • /
    • 2007
  • The current model based sensorless method has many benefits that it can be robust control for large load torque. However, this method should determine a coefficient of back electro motive force(back-emf). This coefficient is varied by load torque and speed. Also, the coefficient determining equation is not exist, so it is determined only by experiment. On the other hands, using only back-emf estimatior method can not drive in low speed area and it has weakness in load variation. For these problems, this paper suggests the hybrid sensorless method that mixes the back-emf estimator regarding saliency and the current based sensorless model. This estimator offers not only non-necessary coefficient for current sensorless model, but also wide speed area operating in no specific transition method.

  • PDF

A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

Development of Remote Diagnostic Monitoring System for Motor-Operated Valves (모터구동밸브의 원격 진단 감시 시스템 개발에 대한 연구)

  • Chanwoo Lim;Jangbom Chai;Seongki Kang;Park, Sungkeun;Shinchul Kang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.346.2-346
    • /
    • 2002
  • A diagnostic methodology, which utilizes only the remotely-measurable signals, has been requested to be developed in order to evaluate and monitor conditions of MOVs. It is proven that the stem thrust are the most important variables which provide the operability of MOVs. Therefore the stem thrust estimator was developed and validated, which estimates stem thrust by use of the motor torque. The motor torque is calculated using electrical signals which can be measured in Motor Control Center(MCC). (omitted)

  • PDF

Online Compensation of Parameter Variation Effects for Robust Interior PM Synchronous Motor Drives

  • Shrestha, Rajendra L.;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.713-718
    • /
    • 2011
  • This paper presents an online voltage disturbance estimator to achieve precise torque control of IPMSMs over a high speed operating region. The proposed design has a type of state-filter based on a Luenburger-style closed loop stator current vector observer. Utilizing the frequency response plot (FRF) approach, the estimation accuracy and the parameter sensitivities are analyzed. Accurate torque control and improved efficiency are provided with the decoupling of the effect of the parameter variations. The feasibility of the presented idea is verified by laboratory experiments.

Precision Speed Control of PMSM Using Disturbance Observer and Parameter Compensator (외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어)

  • 고종선;이택호;김칠환;이상설
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.98-106
    • /
    • 2001
  • This paper presents external load disturbance compensation that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a dead beat observer that is well-known method. However it has disadvantage such as a noise amplification effect. To reduce of the effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. Although RLSM estimator is one of the most effective methods for online parameter identification, it is difficult to obtain unbiased result in this application. It is caused by disturbed dynamic model with external torque. The proposed RLSM estimator is combined with a high performance torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

  • PDF

Comparison Study of On-line Rotor Resistance Estimators based on Alternate QD Model and Classical QD Model for Induction Motor Drives (유도전동기 드라이브에서의 대안모델과 일반표준모델에 기반한온라인 회전자저항 추정기의 성능 비교 연구)

  • Kwon, Chun-Ki;Kim, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Most of rotor resistance estimators utilizes Classical qd Model (CQDM) and Alternate qd Model (AQDM). The rotor resistance estimators based on both models were shown to provide an accurate rotor resistance estimate under conditions where flux is constant such as a field-oriented control (FOC) based induction motor drives. Under the conditions where flux is varying such as a Maximum torque per amp (MTPA) control, AQDM based rotor resistance estimator estimates actual rotor resistance accurately even in different operating points. However, CQDM based rotor resistance estimator has not been investigated and its performance is questionable under condition where flux level is varying. Thus, in this work, the performance of CQDM based rotor resistance estimator was investigated and made comparisons with AQDM based estimator under conditions where flux level is significantly varying such as in MTPA control based induction motor drives. Unlike AQDM based estimator, the laboratory results show that the CQDM based estimator underestimates actual rotor resistance and exhibits an undesirable dip in the estimates in different operating points.

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control (직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF