• Title/Summary/Keyword: Torque Efficiency

Search Result 885, Processing Time 0.028 seconds

A High Performance Pressure Control of SR Type Hydraulic Pump System using Direct Instantaneous Torque Control Method (직접순시토크 제어에 의한 SR구동형 유압 펌프시스템의 고성능 압력제어)

  • Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1751-1756
    • /
    • 2007
  • This paper presents a high performance pressure control scheme for SR(Switched Reluctance) type hydraulic oil pump using DITC(Direct Instantaneous Torque Control). SR drive has a good feature for pump applications due to a high efficiency, high speed and high torque characteristics. But, SR drive has high torque ripple in commutation region. So, the pump pressure variation is high in the region. In order to reduce the pressure variation, DITC combined with pressure control scheme is presented in this paper. A simple PI controller with flow and pressure limit, generates a reference torque to keep the constant actual pump pressure. The direct torque controller of SR drive generates inverter switching signals according to a control rule and a torque estimator. Computer simulation and experiemtal results show the validation of the proposed control scheme.

Study on Optimal Condition of Adaptive Maximum Torque Per Amp Controlled Induction Motor Drives

  • Kwon, Chun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.231-238
    • /
    • 2014
  • Adaptive Maximum Torque Per Amp (Adaptive MTPA) control for induction motor drives seeks to achieve a desired torque with the minimum possible stator current regardless of operating points. This is favorable in terms of inverter operation and nearly optimal in terms of motor efficiency. However, the Adaptive MTPA control was validated only from the viewpoint of tracking a desired torque and was not shown that the desired torque is achieved with minimum possible stator current. This work experimentally demonstrates that optimal condition for Adaptive Maximum Torque Per Amp Control Strategy is achieved regardless of rotor resistance variation.

A Numerical Study of Unsteady Wake Flow Characteristics in a Torque Converter (토크 컨버터 내부의 비정상 후류 유동특성에 대한 수치해석 연구)

  • Won, Chan-Shik;Hur, Nahmkeon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.705-710
    • /
    • 2004
  • In the present study, a transient incompressible viscous turbulent flow is simulated for the automotive torque converter with moving mesh technique. For the analysis, entire torque converter flow passages are modeled. Computed torque ratio, capacity factor and efficiency show a good agreement with the experiment data. The flow instabilities characterized by back-flow and wake etc. appeared in some cascade passages are shown to be Propagating along tangential direction. These flow patterns are mainly influenced by the pump and turbine blade passing and can't be predicted through conventional steady simulation with a mixing plane approach. The understanding of the unsteady flow characteristics in a torque converter achieved in the present study may lead to the optimal design of a torque converter.

  • PDF

A Numerical Study of Unsteady Wake Flow Characteristics in a Torque Converter (토크 컨버터 내부의 비정상 후류 유동특성에 대한 수치해석 연구)

  • Won, Chan-Shik;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.5 s.38
    • /
    • pp.36-41
    • /
    • 2006
  • In the present study, a transient incompressible viscous turbulent flow is simulated for the automotive torque converter with moving mesh technique. For the analysis, entire torque converter flow passages are modeled. Computed torque ratio, capacity factor and efficiency show a good agreement with the experiment data. The flow instabilities characterized by back-flow and wake etc. appeared in some cascade passages are shown to be propagating along tangential direction. These flow patterns are mainly influenced by the pump and turbine blade passing and can't be predicted through conventional steady simulation with a mixing plane approach. The understanding of the unsteady flow characteristics in a torque converter achieved in the present study may lead to the optimal design of a torque converter.

Design Techniques for Reducing Cogging Torque in Permanent Magnet Flux Switching Machine

  • Wang, Daohan;Wang, Xiuhe;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.361-364
    • /
    • 2013
  • Permanent magnet flux switching motor (PMFSM) is a novel double salient machine which employs PMs instead of field winding for excitation. PMFSM contains only one set of armature winding, thereby features simple control strategy, low cost power inverter and substantial high efficiency. Due to the unique double salient structure and operation principle, the generated cogging torque in PMFSM is critical and quite different compared to the traditional PM machines. This paper presents and investigates various design techniques for reducing cogging torque in PMFSM. Firstly, an analytical model is proposed to study the influence of different methods on cogging torque. Then the optimal design parameters for minimizing cogging torque are determined by the analytical model, which significantly reduces the computational efforts. At last, the cogging torque with different design approaches are simulated by FEA along with the average output electromagnetic torque, which validates the analysis above.

Winding Connection Changing Converter for Traction SRM (견인용 SRM의 운전특성개선을 위한 권선전환컨버터)

  • Kim, Tae-Hyoung;Lee, Dong-Hee;An, Young-Joo;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.659-660
    • /
    • 2008
  • This paper presents a hybrid winding connection method for torque characteristics improving of a traction SRM. In order to get a high torque in wide speed range and torque ripple reduction, series and parallel winding connection are changed according to operating speed. From the analysis of torque character operation mode and efficiency, the proposed control scheme is verified.

  • PDF

A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템)

  • 김동희;김민회;김남훈;배원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.427-436
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC). The problems of high-dynamic performance and maximum efficiency RSM drives controlled by DTC are saturation of stator linkage flux and nonlinear inductance characteristics with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance $L_d$ and $L_q$ can be compensated by adapting from measurable the modulus of the stator current and rotor position. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing $I_{ds} = I_{qs}$. This control strategy is proposed to achieve fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at $\pm$20 and $\pm$1500 rpm. The developed digitally high-performance motion control system shown good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

Torque Ripple Reduction Method With Enhanced Efficiency of Multi-phase BLDC Motor Drive Systems Under Open Fault Conditions (다상 BLDC 모터 드라이브 시스템의 개방 고장 시 효율 향상이 고려된 토크 리플 저감 대책)

  • Kim, Tae-Yun;Suh, Yong-Sug;Park, Hyeon-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • A multi-phase brushless direct current (BLDC) motor is widely used in large-capacity electric propulsion systems such as submarines and electric ships. In particular, in the field of military submarines, the polyphaser motor must suppress torque ripple in various failure situations to reduce noise and ensure stable operation for a long time. In this paper, we propose a polyphaser current control method that can improve efficiency and reduce torque ripple by minimizing the increase in stator winding loss at maximum output torque by controlling the phase angle and amplitude of the steady-state current during open circuit failure of the stator winding. The proposed control method controls the magnitude and phase angle of the healthy phase current, excluding the faulty phase, to compensate for the torque ripple that occurs in the case of a phase open failure of the motor. The magnitude and phase angle of the controlled steady-state current are calculated for each phase so that copper loss increase is minimized. The proposed control method was verified using hardware-in-the-loop simulation (HILS) of a 12-phase BLDC motor. HILS verification confirmed that the increase in the loss of the stator winding and the magnitude of the torque ripple decreased compared with the open phase fault of the motor.

Technical Feasibility of Ethanol-Kerosene Blends for Farm Kerosene Engines (에타놀-석유(石油) 혼합연료(混合燃料)의 농용석유(農用石油)엔진에의 이용(利用)에 관(關)한 연구(硏究))

  • Bae, Yeong Hwan;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-61
    • /
    • 1982
  • As an attempt to reduce the consumption of petroleum resources and to improve the performance of a kerosene engine, a series of experiments was conducted using several kinds of ethanol-kerosene blends under the various compression ratios. The engine used in this study was a single-cylinder, four-cycle kerosene engine having a compression ratio of 4.5. To investigate the feasibility of ethanol-kerosene blends in the original engine, kerosene and blends of 5-percent, 10-percent, and 20-percent-ethanol, by volume, with kerosene were used. And to investigate the feasibility of improving the performance of the kerosene engine, a portion of the cylinder head was cut off to increase the compression ratio up to 5.0 by reducing the combustion chamber volume. Kerosene and blends of 30-percent and 40-percent-ethanol, by volume, with kerosene were used for the modified engine with an increased compression ratio. Variable speed tests at wide-open throttle were also conducted at five speed levels in the range of 1000 to 2200 rpm for each compression ratio and fuel type. Volumetric efficiency, engine torque, and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heating values of kerosene and ethanol was calculated. The results obtained in the study are summarized as follows: A. Test with the original engine: (1) No abnormal conditions were found when burning ethanol-kerosene blends in the original engine. (2) Volumetric efficiency increased with ethanol concentration in blends. When burning blends of 5-percent, 10-percent, and 20-percent ethanol, by volume, with kerosene, average volumetric efficiency increased 1.6 percent, 2.6 percent, and 4.1 percent respectively, than when burning kerosene. (3) Mean engine torque increased 5.2 percent for 5-percent-ethanol blend, 9.3 percent for 10-percent-ethanol blend, and 11.5 percent for 20-percent-ethanol blend than for kerosene. Increase in engine torque when using ethanol-kerosene blends was due to the improved combustion characteristics of ethanol as well as an increase in volumetric efficiency. (4) Up to ethanol concentration of 20 percent, mean brake specific fuel consumption was nearly constant inspite of the difference in heating value between ethanol and kerosene. (5) Brake thermal efficiency increased 0.3 percent for 5-percent-ethanol blend, 3.8 percent for 10-percent-ethanol blend, and 6.8 percent for 20-percent-ethanol blend than for kerosene. B. Test with the modified engine with an increased compression ratio: (1) When burning kerosene, mean volumetric efficiency, engine torque, and brake thermal efficiency were somewhat lower than for the original engine. (2) Engine torque increased 15.1 percent for 30-percent-ethanol blend and 18.4 percent for 40-percent-ethanol blend than for kerosene. (3) There was no significant difference in brake specific fuel consumption regardless of ethanol concentration in blends. (4) Brake thermal efficiency increased 15.0 percent for 30-percent-ethanol blend and 19. 5 percent for 40-percent-ethanol blend than for kerosene.

  • PDF

Copper Loss and Torque Ripple Minimization in Switched Reluctance Motors Considering Nonlinear and Magnetic Saturation Effects

  • Dowlatshahi, Milad;Saghaiannejad, Sayed Morteza;Ahn, Jin-Woo;Moallem, Mehdi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.351-361
    • /
    • 2014
  • The discrete torque generation mechanism and inherently nonlinear magnetic characterization of switched reluctance motors lead to unacceptable torque ripples and limit the application of these motors. In this study, a phase current profiling technique and torque sharing function are proposed in consideration of magnetic saturation effects and by minimizing power loss in the commutation area between the adjacent phases. Constant torque trajectories are considered in incoming and outgoing phase current planes based on nonlinear T-i-theta curves obtained from experimental measurements. Optimum points on constant torque trajectories are selected by improving drive efficiency and minimizing copper loss in each rotor position. A novel analytic invertible function is introduced to express phase torque based on rotor position and its corresponding phase current. The optimization problem is solved by the proposed torque function, and optimum torque sharing functions are derived. A modification method is also introduced to enhance the torque ripple-free region based on simple logic rules. Compared with conventional torque sharing functions, the resultant reference current from the proposed method has less peak and effective values and exhibits lower copper loss. Experimental and simulation results from a four-phase 4 KW 8/6 SRM validate the effectiveness of the proposed method.