• Title/Summary/Keyword: Torpedo anchor

Search Result 2, Processing Time 0.014 seconds

Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Method (Coupled Eulerian-Lagrangian (CEL) 방법을 이용한 Dynamically Penetrating Anchor의 동적 거동 분석)

  • Kim, Youngho;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.895-906
    • /
    • 2014
  • A fundamental study of the dynamically penetrating anchor (DPA - colloquially known as torpedo anchor) embedded into deep seabed was conducted using measurement data and numerical approaches. Numerical simulation of such a structure penetration was often suffered by severe mesh distortion arising from very large soil deformation, complex contact condition and nonlinear soil behavior. In recent years, a Coupled Eulerian-Lagrangian method (CEL) has been used to solve geomechanical boundary value problems involving large deformations. In this study, 3D finite element analyses using the CEL formulation are carried out to simulate the construction process of dynamic anchors. Through comparisons with results of field measurements, the CEL method in the present study is in good agreement with the general trend observed by in-situ measurements and thus, predicts a realistic large deformation movement for the dynamic anchors by free-fall dropping, which the conventional FE method cannot. Additionally, the appropriate parametric studies needed for verifying the characteristic of dynamic anchor are also discussed.

Performance of novel dynamic installed anchors during installation and monotonic pullout

  • Kim, Youngho;Rosher, Lachlan Thomas
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2019
  • This paper examines the results from three-dimensional dynamic finite element analysis undertaken to develop a new dynamically installed anchor (DIA). Several candidate shapes of new DIAs were selected after an investigation into previous researches of existing DIA designs. The performances of selected DIAs during the installation and loading in non-homogeneous clay were investigated through large deformation finite element (LDFE) analyses. Findings were compared to the current anchors in operation (i.e., Torpedo and Omni-Max DIA) to assess the viability of the new designs in the field. Overall, the anchor embedment depths of the novel DIAs lied under the results of OMNI-Max DIA. And also, the tracked anchor trajectory confirmed that, the novel DIAs dove deeper with stiffer travelling angle, compared to the OMNI-Max DIA. These elements are more critical and beneficial especially in a field where the achieved embedment depths are generally low.