• 제목/요약/키워드: Torenia

Search Result 5, Processing Time 0.019 seconds

Transcriptional activation of anthocyanin structural genes in torenia cv. Kauai rose by overexpression of anthocyanin regulatory transcription factors

  • Xu, Jun-Ping;Naing, Aung Htay;Kim, Chang-Kil
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.33-33
    • /
    • 2018
  • This study was conducted to examine the role of the transcription factors (TFs) (RsMYB1 and mPAP1+B-Peru) in the regulation of anthocyanin biosynthesis in the ornamental torenia cv. Kauai rose. In this study, we could produce several putative transgenic lines overexpressing the TFs via Agrobacterium-mediated transformation, and presence of the TFs in the randomly selected five transgenic lines was confirmed using polymerase chain reaction (PCR). According to results of reverse transcription-PCR analysis (RT-PCR), the expression of the TFs in all transgenic lines and of the anthocyanin structural genes (CHS, F3H, DFR, and ANS) in all transgenic lines and WT plants were distinctly detectable. However, transcript levels of the structural genes expressed in the transgenic lines overexpressing TFs were significantly higher than those expressed in WT plants. Therefore, it is suggested that anthocyanin content in flowers of the transgenic torenia would be significantly higher than that in flowers of WT plants. Moreover, these results indicate that the TFs (RsMYB1 and mPAP1+B-Peru) could be exploited as potential anthocyanin regulatory TFs to enhance anthocyanin content in the other horticultural plants.

  • PDF

THE MOLECULAR BREEDING OF ORNAMENTAL FLOWERING PLANTS; FLOWER COLOR MODIFICATION OF Torenia hybrida

  • Ken-icho Suzuki;Yoshikazu Tanaka;Hui-min Xue;Yuko Fukui;Masao Fukuchimi-Zutani;Shinzo Tsuda;Yukihisa Katsumoto;Kazuyuki Ohhira;Keio Yunekura-Sakakobara;Takaaki Kusumi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1998.07a
    • /
    • pp.79-82
    • /
    • 1998
  • White and blue/white varieties of Torenia hybrida cv. Summerwave (SWB) were successfully obtained from the blue variety of by cosuppressing gene expression of two of the enzymes involved in anthocyanin biosynthesis; chalcone synthase (CHS) and dihydroflavonol 4-reductase (DFR). Such molecular brceding is the only precise and efficient way to widen the flower color variation of SWB due to its male and female sterility. Flower color and the degree of suppression varies depending on the transgenic lines. The dorsal and ventral petal lobes and corolla tube consistently lose anthocyanins prior to lateral petal lobes. A pink variety was also obtained by cosuppressing the flavonoid 3`5`-hydroxylase (F3`5`H) gene. Yellow torenia was obtained from T-33, an in-house cultivar that contained both carotenoids and anthocyanins, by blockage of anthocyanin biosynthesis with cosuppressing CHS or DFR genes.

  • PDF

The Observation of Arbuscular Mycorrhizal Roots in Horticultural Plants

  • Kim, Yee;Eom, Ahn-Heum;Tae, Moon-Sung;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.28 no.3
    • /
    • pp.115-118
    • /
    • 2000
  • To determine the degree of variability among the host plant species in their abilities to become colonized by arbuscular mycorrhizal fungi (AMF), the inoculum for AMF was collected from the various sites in Korea and was inoculated to the three horticultural plants; Tagetes patula, Torenia fournieri, and Salvia splendens. After 4-month growth under greenhouse, mycorrhizal root colonization rates and spore density were measured. The roots of T. patula showed higher colonization rate than both plants of T. fournieri and Salvia splendens. The mycorrhizal root colonization was influenced by both of the AM fungal inoculum and the host species or their interactions. The combination of the host and fungal species was suggested to be important for the application of AMF to horticultural crops.

  • PDF

An updated taxonomy of the family Linderniaceae in Korea

  • Bazarragchaa, Badamtsetseg;Yang, Seungah;Kim, Hyoun Sook;Lee, Sang Jin;Lee, Joongku
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.1007-1018
    • /
    • 2019
  • In the present study, according to morphological observations followed by recent circumscriptions, we have classified the Korean taxa of the family Linderniaceae into Scrophulariaceae sensu lato has been considered in several works, though the taxa have remained undefined because identification work was mostly done according to vegetative morphological features, such as the leaf shape, leaf margins, and leaf venation. The taxa of Linderniaceae are mostly considered to be weeds and, for correct identification, it is necessary to clarify their taxonomic characteristics. Morphological studies were carried out using samples collected in the field. Micro-morphological observations of the vegetative and floral parts were also performed using light microscopy (LM) and scanning electron microscopy (SEM). We concluded that important characteristics are reproductive morphologies viz. calyx, stamen structure, capsule shape, calyx ratio with capsule, inflorescence morphology, and seed morphology. As a result, we formulated taxa descriptions and provided a key of the genera of Linderniaceae in Korea. Lindernia crustacea (L.) F. Muell. is transferred to Torenia crustacea (L.) Cham. & Schltdl. Lindernia micrantha D. Don and L. angustifolia (Benth.) Wettstein are a synonym of Vandellia micrantha (D. Don) Eb. Fisch., Schäferh. & Kai Müll. Lindernia attenuata Muhl. and L. dubia var. major (Pursh) Pennell are a synonym of Lindernia dubia (L.). Lindernia verbenifolia (Colsm.) Pennell is a synonym of Bonnaya antipoda Druce. Our study reports the presence of four genera: Bonnaya, Lindernia, Torenia, and Vandellia, comprising six taxa under the family Linderniaceae in Korea.

Flower color modification by genetic engineering

  • Masako, Fukuchi-Mizutani;Tanaka, Yoshikazu
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.3-8
    • /
    • 2005
  • Torenia hybridacv. Summerwave Blue and Violet mainly produce delphinidin. Down regulation of their flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase (F3'5'H) genes and over expression of rose or pelargonium dihydroflavonol 4-reductase (DFR) cDNA yielded pelargonidin-based bright pink flowers. Nierembergia cv. Fairybells lack pink color as they produced only delphinidin and flavonols. Pelargonidin-based pink flowers were achieved by down regulation of F3'5'H and flavonol synthase genes and over expressing rose DFR cDNA. Introduction of petunia F3'5'H and DFR cDNAs into white carnations deficient in DFR activity produced violet carnations, which arc now commercialized in the USA, Canada, Australia, Europe and Japan. Introduction of pansy F3'5'H and iris DFR cDNAs and down regulation of rose DFR gene produced rose flowers which accumulates delphinidin imparting novel violet color.

  • PDF