• 제목/요약/키워드: Topographical classifier

검색결과 4건 처리시간 0.021초

항공 라이다 데이터로부터 데이터마이닝 도구 WEKA를 이용한 지형 분류기 제작 지원 시스템 (A Topographical Classifier Development Support System Cooperating with Data Mining Tool WEKA from Airborne LiDAR Data)

  • 이성규;이호준;성철웅;박창후;조우석;김유성
    • 한국측량학회지
    • /
    • 제28권1호
    • /
    • pp.133-142
    • /
    • 2010
  • 국토의 구성 및 변화를 파악하기 위해서 항공 라이다 데이터의 효율적 처리를 통해 정확하게 지표의 유행(land-cover type)을 분류할 수 있는 지능형 지형 분류기(intelligent topographical classifier)의 필요성이 증대되고 있다. 본 연구에서는 정확하고 효율적인 지형 분류기 개발을 용이하게 하기 위해 데이터마이닝 도구인 WEKA를 연동시켜 항공 라이다 데이터를 가공처리하고 다양한 데이터마이닝 기법을 활용한 비교 실험을 통해 정확성이 높은 지형 분류기 제작을 지원하는 소프트웨어 시스템을 개발하였다. 본 연구에서 개발한 지형 분류기 제작 지원 시스템은 항공 영상 이미지 위에 라이다 데이터를 중첩시키는 기능, 효율적인 처리를 위한 타일링 기능, 부분 영역의 3차원 시각화 기능, 타일의 특정 추출 기능, WEKA 입력 자동 생생 기능, 분류 모델의 분류 규칙 집합을 C++ 프로그램으로 자동 코딩하여 분류기로 변환하는 기능, 타일별 지형 분류 결과 표시 기능 등이 구현되어 있다. 또한, 연동된 WEKA틀 이용해서는 분별력이 높은 특정 정보 선정 기능, 다양한 분류 기법을 적용한 지형 분류 모델 생성 기능, 지형 분류 규칙 집합 생생 기능 등을 활용하여 지형 분류기 제작을 지원할 수 있다. 따라서 항공 라이다 데이터를 이용하여 지형의 유형을 분류하는 지능형 지형 분류기를 개발하고자 하는 사용자는 본 연구에서 개발한 지형 분류기 제작 지원 시스템을 활용하여 해당 지형의 특성에 맞고 분류기 개발 목적에 부합하는 지형 분류기를 용이하게 효과적으로 개발할 수 있다.

A Study on the Land Cover Characteristics in Korea : Application of Hybrid Classifier and Topographic Normalization

  • Jeon, Seong-Woo;Jung, Hui-Cheul;Chung, Sung-Moon;Lee, Sang-Ik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.271-280
    • /
    • 1999
  • The topographical effect resulted from rugged terrains and inhomogeneous spectral characteristics due to the complexly mixed land cover condition of Korea substantially lower the remotely sensed land cover classification accuracy In this study, a topographic correction method using digital elevation model to alleviate the topographic effects. To deal with inhomogeneous spectral characteristic, a hybrid classifier with inclusion of prior probabilities was introduced. This investigation concluded that the topographical normalization and hybrid classification with prior probabilities are effective on rugged landscape. The overall and average classification accuracies were improved by 0.92% and 1.016% respectively. The most substantial and noticeable accuracy improvement was observed in forest areas.

  • PDF

지형학적 인자를 이용한 광역 홍수범람 위험지역 분석 (Analysis of large-scale flood inundation area using optimal topographic factors)

  • 이경상;이대업;정성호;이기하
    • 한국수자원학회논문집
    • /
    • 제51권6호
    • /
    • pp.481-490
    • /
    • 2018
  • 최근 기후변화와 이상기후의 영향으로 인한 홍수재해의 시 공간적 패턴의 변화가 복잡해짐에 따라 홍수범람 예측은 점점 어려워지고 있다. 이러한 기상이변에 따른 홍수피해를 예방하고 대응하기 위한 비구조적 대책으로 홍수위험등급 및 범람범위 등의 정보를 포함하고 있는 홍수위험지도의 작성이 필요하다. 실제로 고정밀도 홍수위험지도를 작성하기 위해서는 1차적으로 지형, 지질, 토지피복, 기상 등의 자료를 기반으로 강우-유출-범람해석을 통해 침수면적 및 침수깊이 등 범람 정보를 획득해야 되며, 2차적으로 피해액 산정을 위해 사회 경제와 관련된 다양한 DB를 필요로 한다. 하지만 개발도상국에서는 이러한 자료가 부족하고, 일부지역에서는 자료자체를 획득할 수가 없어 홍수위험지도 제작이 불가능하거나 그 정확도가 매우 낮은 실정이다. 본 연구에서는 ASTER 또는 SRTM과 같은 범용 지형자료로부터 주요 지형학적 인자를 선정하고, 선형이진분류법(Liner binary classifiers)과 ROC분석(Receiver Operation Characteristics)을 사용하여 실제 홍수유역을 유사하게 모의하는 최적 지형학적 인자를 도출하고, 이를 기반으로 광역 홍수범람지도를 작성하는 방안을 제시한다. 본 연구에서 제시하는 방법론의 정확도 검증을 위해 북한(2007), 방글라데시(2007), 인도네시아(2010), 태국(2011), 미얀마(2015) 5개국의 대규모 홍수범람에 대해 적용하였다. 실제 홍수범람 영상정보에서 획득된 침수면적과의 공간적 비교 검토 결과, 최저(38%, 방글라데시), 최고(78%)으로 평균적으로 약 60%의 정확도를 나타내는 것으로 분석되었다. 본 연구에서 제시하는 지형학적 인자 기반의 홍수범람지도 작성방법은 미계측유역에 대해서도 DEM만을 사용하여 홍수위험 지역을 쉽게 구분할 수 있다는 장점을 가지고 있어 1 2차원 범람해석 모형의 적용이 어려운 대유역에 대해 홍수범람 우려지역에 대한 공간정보를 제공해줄 수 있을 것으로 판단된다.

Landsat TM 화상자료(畵像資料)를 이용한 평택시지역 지표피복분류(地表被覆分類) (Land Cover Classification by Using Landsat Thematic Mapper Data in Pyeongtaeg City)

  • 임상규;홍석영;정원교;김무성
    • 한국토양비료학회지
    • /
    • 제34권5호
    • /
    • pp.342-349
    • /
    • 2001
  • Landsat TM 인공위성 자료(1997년 6월 16일 촬영)를 이용하여 평택시에 대한 지표피복분류도를 만들고 정확도를 평가하였고, 또한 우리 나라의 농업실정에 맞는 지표피복 분류체계를 세우기 위해 Anderson의 지표피복분류안을 응용하여 새로운 분류안을 만들었다. 분류방식으로는 감독분류를 사용하였는데 결과에 직접적인 영향을 주는 훈련장소(training site)의 선정을 위해 지형도, 항공사진 등과 현지 실사자료인 DGPS 자료를 사용하여 논, 밭 등 13개의 훈련조(training sets)를 작성 후 최대우도법(最大尤度法)(maximum likelihood classifier)을 적용하여 주제도를 만들었다. 이의 정확도 평가를 위해 DGPS, 항공사진, 지형도 등을 이용한 분류정확도 평가에서 전체 정확도는 86.8%이며, 카파계수가 85.4%로 매우 양호한(Excellent) 것으로 판명되었다. 그러나 도시/촌락, 비닐하우스 등의 사용자 정확도는 60% 정도로서 낮은 편이며, 도로, 비닐하우스 등의 생산자 정확도는 70% 정도로 낮은 편인데, 이는 인공건조물이라는 특징에 따른 분광학적 반사특성과 이질성(異質性)과 분포면적이 적은데 기인된 것으로 생각된다. 한편 원격탐사자료를 이용하여 토지피복 분류도를 작성할 때 우리나라 농업실정에 알맞은 농업적(農業的) 지표피복분류안(地表被覆分類案)을 만들었는데, 수준 I에는 농경지, 산림지, 물, 불모지, 도시나 인공건조물 등으로 나눌 수 있다.

  • PDF