• Title/Summary/Keyword: Topographic map

Search Result 472, Processing Time 0.024 seconds

Simulation Map of Potential Natural Vegetation in the Gayasan National Park using GIS (지리정보시스템을 이용한 가야산국립공원의 잠재자연식생 추정)

  • Kim, Bo-Mook;Yang, Keum-Chul
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.2
    • /
    • pp.115-121
    • /
    • 2017
  • This study estimated potential natural vegetation in Gayasan National Park through the occurrence probability distribution by using geographic information system (GIS). in Gayasan National Park. Correlation and factor analysis were analyzed to estimate probability distribution. The presence of the Gaya National Park Vegetation survey results showed that 128 communities were distributed. The analyzed relationship between actual vegetation and distribution factors such as elevation, aspect, slope, topographic index, annual mean temperature, warmth index and potential evapotranspiration in Gayasan national park. The probability distribution of potential natural vegetation communities at least 0.3 odds were the advent of Pinus densiflora communities with the highest 55.80%, Quercus mongolica community is 44.05%, 0.09% is Quercus acutissima communities, Quercus variabilis communities are found to be 0.06%. If you want to limit the factors that affect the distribution of vegetation by factors presented in this study, the potential natural vegetation of the Gaya National Park was expected to appear in Quercus mongolica community (43.1%) and Pinus densiflora communities (56.9%).

Efficiency Analysis of Mobile Geographic Survey System (차량용 지리조사 시스템의 효율성 분석)

  • Seo, Sang-Il;Lee, Byoungkil;Kim, Jong In
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.487-493
    • /
    • 2014
  • A geographic survey, which requires much of working hours in the digital mapping process, is consisted with the complementary survey and the attribute survey of topography and topographic features, and depended on the field survey. In previous research, using the location-based image had been recommended for diminishing the workload of field survey and post processing. For this research, we have developed the hardware and software for gathering and processing the location-based images with referencing results from the previous research. Those Geographic surveys were performed using developed system on 1/5,000 map sheets for Si and Gun area, respectively. The results have been evaluated as the mobile geographic survey system were able to replace the large part of field survey, and also the working hours were decreased by 37.5% at Si area. However, the complementary survey was needed for the attributes of topography and topographic features that were occluded by the parked vehicles or located in the areas without entry of vehicles.

Development of Digital Photogrammetric Systems for Three-Dimensional Topographic Information Analysis (3차원 지형정보분석을 위한 수치사진측량시스템 개발)

  • 유환희;안충현;오성남;성민규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 1999
  • Lately, with the development of the fields of computer and photogrammetry, Digital Photogrammetric Systems are widely used for the generation of GIS basemap, the acquisition of topographic information and DEM, the formation of digital orthophoto, three-dimensional viewing and so on. According as the demand for the systems is rapidly increasing, we suggest keenly the necessity of domestic technical development, because all of these systems depend on foreign technology until now. In this study, by using digital photogrammetry method, with Visual C++ language, we have developed Digital Photogrammetric Systems for Windows which is able to get three-dimensional coordinates through interior orientation, exterior orientation, epipolar line, image matching from a pair of aerial photos taken with metric camera. This system consists of not only a module which can revise digital map that is being made at National Geographic Institute as a part of data construction project of National Geographic Information System, but also a module which can view three-dimensional image on the screen monitor by using anaglyph for three-dimensional analysis. The digital photogrammetry modules developed in this study are expected to be used as primary modules for the effective management of the urban as well as main modules in developing professional digital photogrammetric systems.

  • PDF

Estimation of Design Wind Speed for Building Using Spatial Information Analysis (공간정보 분석을 통한 건축물의 설계풍속 산정)

  • Lee, Seong-Yun;Jo, Hyun-Jae;Lee, Hyun-Ki;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.79-89
    • /
    • 2015
  • Once the building is higher than certain size, the wind effect plays very important role in structure design. Moreover, this is more important in Korea because dangerous phenomena like typhoons are common. Rational wind resistant design is being magnified considering the global flow and climate changes. This research presented the estimation method of design wind load using spatial information analysis based on 1:5,000 digital map and performed comparative analysis with actual application cases. The wind velocity pressure exposure coefficient and topographic coefficient turned out to be more quantitative and rational when calculated through the proposed method. The time and cost are comparatively low when compared with traditional method which contribute to the economic and rational wind resistant design.

Evaluation of Digital Elevation Model Created form SPOT 5/HRG Stereo Images (SPOT 5/HRG 입체영상으로부터 추출된 DEM의 평가)

  • Kim Yeon-Jun;Yu Young-Geol;Yang In-Tae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.153-158
    • /
    • 2006
  • A new High Resolution Geometry or HRG imaging instrument is developed by CNES to be carried on-board SPOT 5. The HRG instrument offers a higher ground resolution than that of the HRV/HRVIR on SPOT 1 - 4 satellites. The field width of HRG is 60 km, same as SPOT constellation. With two HRG instruments, a maximum swath of 120 km at 5 m resolution can be achieved. The generation of Digital Elevation Models (DEMs) from satellite stereo images scores over conventional methods of DEM generation using topographic maps and aerial photographs. This global availability of satellite images allows for quicker data processing for an equivalent area. In this study, a HRG stereo images of SPOT 5 over JECHEON has been used with Leica Photogrammetry Suite OrthoBASE Pro tool for the creation of a digital elevation model (DEM). The extracted DEM was compared to the reference DEM obtained from the contours of digital topographic map.

Long-term Runoff Analysis Using the TOPMODEL (TOPMODEL을 이용한 장기유출 해석)

  • Jo, Hong-Je;Kim, Jeong-Sik;Lee, Geun-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.393-405
    • /
    • 2000
  • Monthly runoff was estimated using TOPMODEL which simulates ground water movement as well as surface runoff in the area of catchment. SAYUN dam which is being operated by Korea Water Resources Corporation was selected for the study, and the topographic factors of the watershed were analyzed using 1/5,000 digital map and GIS software(Arc/Info). The comparison shows good agreement between observed monthly runoff and the computation results simulated by using TOPMODEL. The catchment area of SAYUN dam was modeled by using various grid sizes in order to check the sensitivity of grid size, and the grid size of 180m was found most proper among 6 different sizes. TOPMODEL was also found superior to the existing monthly runoff models such as Kajiyama, KRIHS and Tank. Because the model requires limited number of parameters and considers topographic aspects, it is reckoned to be very useful for practical use.

  • PDF

Topographic Mapping using SAR Interferometry Method (레이다 간섭기법(SAR Interferometry)을 이용한 지형도 제작)

  • Jeong, Do-Chan;Kim, Byung-Guk
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2000.06a
    • /
    • pp.67-76
    • /
    • 2000
  • Recently, SAR Interferometry method is actively being studied as a new technic in topographic mapping using satellite imageries. it extract height values using two SAR imageries covering same areas. Unlike when using SPOT imageries, it isn't affected by atmospheric conditions and time. But it is difficult to process radar imageries and the height accuracy is very low where relief displacements are high. In this study, we produced DEM(Digital Elevation Model) using ERS-1, ERS-2 tandem data and analysed the height accuracy over 14 ground control points. The mean error in height was 14.06m. But when using airborne SAR data, it Is expected that we can produce more accurate DEM which will be able to ue used in updating 1/10,000 or 1/25,000 map.

  • PDF

Development of Artificial Neural Network Techniques for Landslide Susceptibility Analysis (산사태 취약성 분석 연구를 위한 인공신경망 기법 개발)

  • Chang, Buhm-Soo;Park, Hyuck-Jin;Lee, Saro;Juhyung Ryu;Park, Jaewon;Lee, Moung-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.499-506
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural networks and to apply the newly developed techniques for assessment of landslide susceptibility to the study area of Yongin in Korea. Landslide locations were identified in the study area from interpretation of aerial Photographs and field survey data, and a spatial database of the topography, soil type and timber cover were constructed. The landslide-related factors such as topographic slope, topographic curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter were extracted from the spatial database. Using those factors, landslide susceptibility and weights of each factor were analyzed by two artificial neural network methods. In the first method, the landslide susceptibility index was calculated by the back propagation method, which is a type of artificial neural network method. Then, the susceptibility map was made with a GIS program. The results of the landslide susceptibility analysis were verified using landslide location data. The verification results show satisfactory agreement between the susceptibility index and existing landslide location data. In the second method, weights of each factor were determinated. The weights, relative importance of each factor, were calculated using importance-free characteristics method of artificial neural networks.

  • PDF

Classification Strategies for High Resolution Images of Korean Forests: A Case Study of Namhansansung Provincial Park, Korea

  • Park, Chong-Hwa;Choi, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.708-708
    • /
    • 2002
  • Recent developments in sensor technologies have provided remotely sensed data with very high spatial resolution. In order to fully utilize the potential of high resolution images, new image classification strategies are necessary. Unfortunately, the high resolution images increase the spectral within-field variability, and the classification accuracy of traditional methods based on pixel-based classification algorithms such as Maximum-Likelihood method may be decreased (Schiewe 2001). Recent development in Object Oriented Classification based on image segmentation algorithms can be used for the classification of forest patches on rugged terrain of Korea. The objectives of this paper are as follows. First, to compare the pros and cons of image classification methods based on pixel-based and object oriented classification algorithm for the forest patch classification. Landsat ETM+ data and IKONOS data will be used for the classification. Second, to investigate ways to increase classification accuracy of forest patches. Supplemental data such as DTM and Forest Type Map of 1:25,000 scale are used for topographic correction and image segmentation. Third, to propose the best classification strategy for forest patch classification in terms of accuracy and data requirement. The research site for this paper is Namhansansung Provincial Park located at the eastern suburb of Seoul Metropolitan City for its diverse forest patch types and data availability. Both Landsat ETM+ and IKONOS data are used for the classification. Preliminary results can be summarized as follows. First, topographic correction of reflectance is essential for the classification of forest patches on rugged terrain. Second, object oriented classification of IKONOS data enables higher classification accuracy compared to Landsat ETM+ and pixel-based classification. Third, multi-stage segmentation is very useful to investigate landscape ecological aspect of forest communities of Korea.

  • PDF

Improvements on the Three-Dimensional Positioning of High Resolution Stereo Satellite Imagery (고해상도 스테레오 위성영상의 3차원 정확도 평가 및 향상)

  • Jeong, In-Jun;Lee, Chang-Kyung;Yun, Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.617-625
    • /
    • 2014
  • The Rational Function Model has been used as a replacement sensor model in most commercial photogrammetric systems due to its capability of maintaining the accuracy of the physical sensor models. Although satellite images with rational polynomial coefficients have been used to determine three-dimensional position, it has limitations in the accuracy for large scale topographic mapping. In this study, high resolution stereo satellite images, QuickBird-2, were used to investigate how much the three-dimensional position accuracy was affected by the No. of ground control points, polynomial order, and distribution of GCPs. As the results, we can confirm that these experiments satisfy the accuracy requirements for horizontal and height position of 1:25,000 map scale.