• Title/Summary/Keyword: Topographic index

Search Result 147, Processing Time 0.025 seconds

Sedimentary type Non-Metallic Mineral Potential Analysis using GIS and Weight of Evidence Model in the Gangreung Area (지리정보시스템(GIS) 및 Weight of Evidence 기법을 이용한 강릉지역의 퇴적기원의 비금속 광상부존가능성 분석)

  • Lee Sa-Ro;Oh Hyun-Joo;Min Kyung-Duck
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.129-150
    • /
    • 2006
  • Mineral potential mapping is an important procedure in mineral resource assessment. The purpose of this study is to analyze mineral potential using weight of evidence model and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential mineral in the Gangreung area, Korea. for this, a spatial database considering mineral deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The used mineral deposits were non-metallic(Kaolin, Porcelainstone, Silicastone, Mica, Nephrite, Limestone and Pyrophyllite) deposits of sedimentary type. The factors relating to mineral deposits were the geological data such as lithology and fault structure, geochemical data, including the abundance of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, V, Zn, $Cl^-,\;F^-,\;{PO_4}^{3-},\;{NO_2}^-,\;{NO_3}^-,\;SO_{42-}$, Eh, PH and conductivity and geophysical data, including the Bouguer and magnetic anomalies. These factors were used with weight of evidence model to analyze mineral potential. Probability models using the weight of evidence were applied to extract the relationship between mineral deposits and related factors, and the ratio were calculated. Then the potential indices were calculated by summation of the likelihood ratio and mineral potential maps were constructed from Geographic Information System (GIS). The mineral potential maps were then verified by comparison with the known mineral deposit areas. The result showed the 85.66% in prediction accuracy.

  • PDF

Construction Plan of 3D Cadastral Information System on Underground Space (지하공간 3차원 지적정보시스템 구축 방안 연구)

  • Song, Myungsoo;Lee, Sungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.57-65
    • /
    • 2014
  • Recently, Construction business is changing from on the ground to underground space because of deficit of developing space, creation of green space and of incremental of land compensation expenses. Meanwhile, 3D Topographic, Marine and Cadastral maps need to have Spatial Interrelation. Also, understanding of the information is also needed. Spatial information object registration system is impossible to contact and understanding intelligence mutually because the former one is managed as automatic ID system. Therefore, 3D Object information ID System of underground space is managed based on Object Identifier. Construction of Spatial information integration ID System is required and it will offer Division Code (Ground, Index, Underground) and depth information. We are defined and classified Under Spatial Information in this paper. Moreover, we developed the integration ID System based on UFID for cadastral information Construction. We supposed underground spatial information DB Construction and a developed the way of exploiting 3D cadastral information system through the study. The research result will be the base data of Standard ID system, DB Construction and system Development of National spatial data which is considered together with spatial interrelation.

Development of Grid based Inundation Analysis Model (GIAM) (격자기반 침수해석모델(GIAM) 개발)

  • Lee, Byong Ju;Yoon, Seong Sim
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.181-190
    • /
    • 2017
  • Population congestion and increasing porosity caused by urbanization and increasing rainfall intensity are the main reasons for urban inundation damage. In order to reduce the damage to urban flooding, it is necessary to take a inundation analysis model that can be considered the topographic impact (i.e., building and road) and simulate the detailed inundation areas. In this study, Grid based Inundation Analysis Model (GIAM) is developed using a two-dimensional shallow water equations. The study area is Gangnam basin, with a surface area of $7.4km^2$, which includes 5 drainage areas such as Nonhyun, Yeoksam, Seocho 1, 2, and 3. EPA SWMM5 is used for simulating the overflows at each manhole. GIAM model is constructed to allow for simulating a inundation area with 6 m grid size. The inundation analysis is conducted in two heavy rainfall events (Sep. 21, 2010 and July 27, 2011) for the model evaluation. The accuracy of the simulated inundation area is calculated 0.61 and 0.57 at POD index using the historical flooded area report. The developed model will be used as a tool for analyzing the flood prone areas based on rainfall scenario, and a tool for predicting the detailed inundation area in the real-time.

A Study on Extraction of Croplands Located nearby Coastal Areas Using High-Resolution Satellite Imagery and LiDAR Data (고해상도 위성영상과 LiDAR 자료를 활용한 해안지역에 인접한 농경지 추출에 관한 연구)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.170-181
    • /
    • 2015
  • A research on extracting croplands located nearby coastal areas using the spatial information data sets is the important task for managing the agricultural products in coastal areas. This research aims to extract the various croplands(croplands on mountains and croplands on plain areas) located nearby coastal areas using the KOMPSAT-2 imagery, the high-resolution satellite imagery, and the airborne topographic LiDAR(Light Detection And Ranging) data acquired in coastal areas of Uljin, Korea. Firstly, the NDVI(Normalized Difference Vegetation Index) imagery is generated from the KOMPSAT-2 imagery, and the vegetation areas are extracted from the NDVI imagery by using the appropriate threshold. Then, the DSM(Digital Surface Model) and DEM(Digital Elevation Model) are generated from the LiDAR data by using interpolation method, and the CHM(Canopy Height Model) is generated using the differences of the pixel values of the DSM and DEM. Then the plain areas are extracted from the CHM by using the appropriate threshold. The low slope areas are also extracted from the slope map generated using the pixel values of the DEM. Finally, the areas of intersection of the vegetation areas, the plain areas and the low slope areas are extracted with the areas higher than the threshold and they are defined as the croplands located nearby coastal areas. The statistical results show that 85% of the croplands on plain areas and 15% of the croplands on mountains located nearby coastal areas are extracted by using the proposed methodology.

A analysis of plant communities distribution characteristics of Boseong river wetland using ordination (서열법(ordination)을 이용한 보성강 하천 습지의 식물군락 분포 특성 분석)

  • Lee, Il Won;Kim, Kee Dae
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.354-366
    • /
    • 2022
  • To analyze the distribution of plant communities growing in river wetlands and the relationship between biotic and abiotic environmental factors, plant communities and environmental factors were investigated in river wetlands in the Boseong River. The Boseong River Wetland, the research site, consists of Hwapyeong Wetland, Bangujeong Wetland, and Seokgok Wetland. From June to September 2022, a plant community survey was conducted from the perspective of physiognomical vegetation, and the coverage of the emerging species followed the Braun-Blanquet scale. Plant species and the coverage of each species were recorded in the quadrant for plant community survey, and the cover of the quadrant, the total number of species, and the number of exotic species were measured as biological factors. As abiotic factors, altitude, orientation, inclination, soil texture, litter layer depth, dominant species diameter at breast height, and topography were recorded. In a total of 50 square plots, the most common Salix koreensis and Phragmites japonicus communities were found, and the community with the highest Shannon species diversity index was Phragmites japonicus-Echinochloa caudata community. As a result of ordination analysis by DCCA, the most significant clusters were separated according to topographic factors such as leeve, leeve slope, upper floodplain, lower floodplain, upper waterside, middle waterside, lower waterside, river island and opem water. As rare plants that need to be preserved in river wetlands, Hydrocharis dubia and Penthorum chinense were found in lower waterside, and it was found that the management of the river in the reservoir is necessary in line with the topographical distribution of ecosystem-disrupting plants, such as Paspalum distichum var. indutum.

Status of Groundwater Potential Mapping Research Using GIS and Machine Learning (GIS와 기계학습을 이용한 지하수 가능성도 작성 연구 현황)

  • Lee, Saro;Fetemeh, Rezaie
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1277-1290
    • /
    • 2020
  • Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industrial and agricultural use. In fact, better management of groundwater can play crucial role in sustainable development; therefore, determining accurate location of groundwater based groundwater potential mapping is indispensable. In recent years, integration of machine learning techniques, Geographical Information System (GIS) and Remote Sensing (RS) are popular and effective methods employed for groundwater potential mapping. For determining the status of the integrated approach, a systematic review of 94 directly relevant papers were carried out over the six previous years (2015-2020). According to the literature review, the number of studies published annually increased rapidly over time. The total study area spanned 15 countries, and 85.1% of studies focused on Iran, India, China, South Korea, and Iraq. 20 variables were found to be frequently involved in groundwater potential investigations, of which 9 factors are almost always present namely slope, lithology (geology), land use/land cover (LU/LC), drainage/river density, altitude (elevation), topographic wetness index (TWI), distance from river, rainfall, and aspect. The data integration was carried random forest, support vector machine and boost regression tree among the machine learning techniques. Our study shows that for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute. Consequently, more study should be conducted to enhance the generalization and precision of groundwater potential map.

A Study on the Combustion Characteristics of the Crown of Pine Trees in the Drying Season (건조기 소나무 수관부 부위별 연소특성에 관한 연구)

  • Hyuk Kwon;Jong Ho Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.39-46
    • /
    • 2023
  • Pine trees, which account for 23% of the forested area of the Republic of Korea, are highly vulnerable to fire in comparison to broad-leaved trees due to the presence of consistent water tube sections throughout the year and resin that is composed of approximately 20% oil. In addition, the pattern of forest fires is determined by weather, topographic conditions, and fluctuation in moisture content. Therefore, when fire breaks out in pine tree forests during the dry season (January to March), it is difficult to extinguish, and it quickly spreads. In this study, the combustion characteristics of pine needles, pine cones, and pine branches in the water tube sections of living pine trees were compared and analyzed in accordance with the moisture content as per the ISO 5660-1. The monthly moisture content was analyzed from January to March, and it was found to be the lowest in March, with 53.6% for pine needles, 51.9% for pine branches, and 10.9% for pine cones. In particular, pine cones were more vulnerable to fire as compared to pine needles and pine branches because their moisture content was more than five times lower than that of pine needles and branches. The ignition time, which affects the speed of flame propagation, was the most rapid in March, and the fastest ignition time was for pine cones, at 19 seconds, followed by 34 seconds for pine needles, and 256 seconds for pine branches. The pine branches were the last to be ignited due to the effect of density, according to the thickness and specific gravity of the specimen. The peak heat release rate, which is a measurable index of fire intensity, was analyzed for pine cones and found to be 184.28 kW/m2 , while the mean effective heat of combustion was 19.79 MJ/kg, and the total heat release rate was 39.7 MJ/m2 , and these values were higher than those of pine branches and pine needles. Thus, we determined that the flame propagation speed and fire intensity according to the moisture content can be used to evaluate the risk of fire to the water tube section of pine trees. It is suggested that because of the combustion characteristics of the pine cone in March, that is when the forest is most vulnerable to fires.

Geomorphological and Sedimentological Characteristics of Jangdo Wetland in Shinan-gun, Korea (신안 장도습지의 지형과 퇴적물 특성)

  • CHOI, Kwang Hee;CHOI, Tae-Bong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.63-76
    • /
    • 2010
  • The Jangdo wetland is located on a very gentle slope of the mountain area in Daejangdo island, Shinan-gun, Korea, in which the area of the watershed is estimated at 147,000 m2. The wetland has been regarded as a peat bog without any sedimentological evidence. This study was conducted to analyze the geomorphological and sedimentological characteristics of the wetland. The geographic information system (GIS) was used to analyze the drainage system, and field surveys were conducted to measure the range and depth of wetland deposits. The grain size analysis, organic matter determination, elements analysis and radiocarbon dating were performed on samples from the wetland. As a result, the wetland deposits were about 30 cm deep on average, the mean grain sizes ranged from 50 to 500 μm, and the average C/N ratio was 11.5. The portion of organic matter it contained was only 5~26%, which did not satisfy the peat standards. The radiocarbon ages from the wetland deposits range 180±50 14C yr BP to modern, which indicated that natural and anthropogenic interferences including agricultural activities have continuously happened. We conclude that the Jangdo wetland is still in its infancy, not a steady state, so that it could be very sensitive to a small disturbance.

Development of Forest Road Network Model Using Digital Terrain Model (수치지형(數値地形)모델을 이용(利用)한 임도망(林道網) 배치(配置)모델의 개발(開發))

  • Lee, Jun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.363-371
    • /
    • 1992
  • This study was aimed at developing a computer model to determine rational road networks in mountainous forests. The computer model is composed of two major subroutines for digital terrain analyses and route selection. The digital terrain model(DTM) provides various information on topographic and vegetative characteristics of forest stands. The DTM also evaluates the effectiveness of road construction based on slope gradients. Using the results of digital terrain analyses, the route selection subroutine, heuristically, determines the optimal road layout satisfying the predefined road densities. The route selection subroutine uses the area-partitioning method in order to fully of roads. This method leads to unbiased road layouts in forest areas. The size of the unit partitiones area can be calculated as a function of the predefined road density. In addition, the user-defined road density of the area-partitioning method provides flexibility in applying the model to real situations. The rational road network can be easily achived for varying road densities, which would be an essential element for network design of forest roads. The optimality conditions are evaluated in conjuction with longitudinal gradients, investment efficiency earthwork quantity or the mixed criteria of these three. The performance of the model was measured and, then, compared with those of conventional ones in terns of average skidding distance, accessibility of stands, development index and circulated road network index. The results of the performance analysis indicate that selection of roading routes for network design using the digital terrain analysis and the area-partitioning method improves performance of the network design medel.

  • PDF

Assessment of Site Environmental Factors on the Structure of Forest Vegetation in Naejang-san National Park Using Canonical Correlation Analysis (정준상관분석을 통한 내장산국립공원 산림식생구조의 입지환경 평가)

  • Kim, Tae-Geun;Cho, Young-Hwan;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.561-569
    • /
    • 2013
  • This study examines locational environment factors that may affect the vegetation structure in the forests of Naejang National Park. To that end, we selected LAI (Leaf Area Index), diameter at breast height, and tree height as structural variables as well as altitude above sea level, gradient, slope direction, soil moisture, topographic location, and amount of solar radiation as locational environment factors, using the method of canonical correlation analysis in order to find out correlation between them. As to the simple correlation between the locational environment factors and structural variables, the correlation coefficient was relatively low (0.6). The values of LAI, measured along the ridge with higher altitudes, decreased as the soil moisture and solar radiation increased. However, LAI increased as the gradient increased and the slope direction faced the north (farther from the east). In respect of the diameter at breast height, the diameter decreased as the altitude and gradient increased. But the diameter increased as the moisture and solar radiation increased. The tree height decreased as the moisture increased and the site was closer to the ridge. These various correlations show a variety of locational environment factors in the national park, implying that the structural variables are affected by complex locational environment factors. This study conducted a canonical correlation analysis on locational environment factors which may affect the vegetation structure, and the result showed that LAI increased and tree height & diameter at breast height decreased as the solar radiation & moisture decreased and altitude increased. Although more factors that may affect vegetation structure (e.g. climate) should be taken into account, this study is significant in that the vegetation structure, which can adapt to more unfavorable conditions in terms of solar radiation, moisture, and higher altitudes, could be inferred in a statistical way. The results of this study, especially the locational environment factors based on DEM, can be used for assessing diversity of vegetation structure in a forest and for monitoring the structure in a national park on a regular basis so as to establish more effective maintenance plans of a park.