• Title/Summary/Keyword: Topographic change

Search Result 220, Processing Time 0.026 seconds

The Korean Geodetic Network Adjustments for EDM Area (국가기준점 망조정에 관한 연구 - EDM 관측지역)

  • Yang, Hyo-Jin;Choi, Yun-Soo;Kwon, Jay-Hyoun;Kim, Dong-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.393-398
    • /
    • 2007
  • According to the Korean datum change to a world geodetic system, the EDM area should be readjusted to provide consistent product over the country. The data set for EDM area is extracted from the previous KTN1987 DB and checked for the moved markers in XY network adjustment which provides quality verification. Then, EDM data set for the seven areas are rebuilt for the adjustment. Since the data is still based on the old datum, the coordinates of the data are transformed by applying the coordinate transformation parameters. Here, the transformation parameters, which were determined for the conversion of 1:50,000 topographic maps by NGII, were used. For each EDM point, the geoidal height from EGM96 model is applied to obtain the ellipsoidal height based on the GRS80. The measured distance projected onto GRS80 is adjusted using BL network adjustment by fixing 2nd order or 3rd order GPS control points. The results from the readjustment show the minimum standard error of 1.37" and the maximum standard error of 2.13". Considering the measurement accuracy of EDM (1.6" corresponding to about 2cm) and GPS position for fixed points (2cm), this result is considered to be reasonable and it is good for the practical use.

Morphological Characteristics of Ocean Core Complexes (OCC) in Central Indian Ridge Using High-Resolution Bathymetry and Backscatter Intensity Data from a Deep-Towed Vehicle (심해예인 고해상도 수심 자료와 후방산란 강도 자료를 이용한 인도양 중앙해령 내 Ocean Core Complex 구조의 지형적 특성 분석)

  • Hwang, Gyuha;Kim, Seung-Sep;Son, Seung Kyu;Kim, Jonguk;Ko, Youngtak
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.49-61
    • /
    • 2020
  • We analyzed the morphological characteristics of OCC (Ocean Core Complexes) in the middle part of the Central Indian Ridge (MCIR) using high-resolution geophysical data recorded on the Deep-Tow SideScan Sonar IMI-30 system. In terms of slope-gradient variations calculated from the high-resolution bathymetry data, the normal faults formed by seafloor spreading were associated generally with slopes > 30° and resulted in high backscatter intensities, which reflect more topographic effects than acoustic medium variation. However, the areas associated with gentle slopes < 10° tend to show the backscatter intensities reflecting the acoustic characteristic of the medium. We show that the detachment faults exposing the OCCs were initiated with high-angle normal faults (58°) exhibiting outward and inward dips of a breakaway zone. In order to examine the spatial distribution of OCC structures, we characterized the transition from magmatic-dominant seafloor with abyssal hills to tectonic-dominant seafloor with OCC using the down-slope direction variation. The slope direction of the seafloor generally tends to be perpendicular to the ridge azimuth in the magmatic-dominant zone, whereas it becomes parallel to the given ridge azimuth near the OCC structures. Therefore, this spatial change of seafloor slope directions indicates that the formation of OCC structures is causally associated with the tectonic-dominant spreading rather than magmatic extension. These results also suggest that the topographical characteristics of seafloor spreading and OCC structures can be distinguished using high-resolution geophysical data. Thus, we propose that the high-resolution bathymetry and backscatter intensity data can help select potential areas of exploitation of hydrothermal deposits in MCIR effectively.

Intertidal DEM Generation Using Waterline Extracted from Remotely Sensed Data (원격탐사 자료로부터 해안선 추출에 의한 조간대 DEM 생성)

  • 류주형;조원진;원중선;이인태;전승수
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.221-233
    • /
    • 2000
  • An intertidal topography is continuously changed due to morphodynamics processes. Detection and measurement of topographic change for a tidal flat is important to make an integrated coastal area management plan as well as to carry out sedimentologic study. The objective of this study is to generate intertidal DEM using leveling data and waterlines extracted from optical and microwave remotely sensed data in a relatively short period. Waterline is defined as the border line between exposed tidal flat and water body. The contour of the terrain height in tidal flat is equivalent to the waterline. One can utilize satellite images to generate intertidal DEM over large areas. Extraction of the waterline in a SAR image is a difficult task to perform partly because of the presence of speckle and partly because of similarity between the signal returned from the sea surface and that from the exposed tidal flat surface or land. Waterlines in SAR intensity and coherence map can effectively be extracted with MSP-RoA edge detector. From multiple images obtained over a range of tide elevation, it is possible to build up a set of heighted waterline within intertidal zone, and then a gridded DEM can be interpolated. We have tested the proposed method over the Gomso Bay, and succeeded in generating intertidal DEM with relatively high accuracy.

A Study on the Effect of Collector Well on the Landcreep Slope (땅밀림 비탈면내 집수정 설치 효과 연구)

  • Jeon, Byeong Chu;Lee, Su Gon
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.123-136
    • /
    • 2019
  • This study examines the effect of collector well installed to reduce groundwater level in the regions with the occurrence of landcreep, a soil mass movement triggered by instability on slopes. Slopes are prone to failure as a result of instability caused by its internal, topographic and geological properties as well as due to external factors such as rainfall and earthquake. In Korea during the rain season, rainfall infiltration affects the groundwater level in soil, building up porewater pressure and load, and finally drives slopes to collapse. Slope failure caused by rainfall infiltration has been leading to a drastic forest degradation. The studied slope is located adjacent to a valley, its terrain corresponds to piedmont gentle slope, while the upper part of the failure surface is steep. After reinforcing the terrain where landcreep had occurred and installing collector well on the slope, we measured the changes in the groundwater level. In order to analyze the relationship between the well and the slope, we calculated the ratio of groundwater level to rainfall before and after the installation of the collector well. As a result, it is confirmed that the ratio increases after the installation of the well, which in turn reduces the groundwater level. Analysis of the change in groundwater level after 3, 7, 15 days antecedent rainfall showed that the higher the overall groundwater level, the less the value ($r_p$) of groundwater level-rainfall ratio is, while the value becomes relatively greater when the groundwater level is low. In particular, if a slope has a large catchment basin as is in the case of the studied site, antecedent rainfall affects groundwater level in the order of 3 < 7 < 15 days.

The Effects of the Online Learning Using Virtual Reality (VR) Geological Data: Focused on the Geo-Big Data Open Platform (가상현실(VR) 지질자료 개발을 통한 원격수업의 효과 분석: 지오빅데이터 오픈플랫폼 활용을 중심으로)

  • Yoon, Han Do;Kim, Hyoungbum;Kim, Heoungtae
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.47-61
    • /
    • 2022
  • In this study, We developed VR (Virtual Reality) geological resources based on the Geo Big Data of the Big Data platform that provided by the Korea Institute of Geoscience and Mineral Material (KIGAM). So students selected the theme of lessons by using these resources and we operated Remote classes using the materials that developed as to Virtual Reality. Therefore, the geological theme maps provided by the Geo Big Data Open Platform were reconstructed and produced materials were created for Study about Real Korean geological outcrops grounded in Virtual Reality. And Topographic information data was used to produce class materials for Remote classes. Twenty students were selected by Random sampling, and data were collected by conducting a survey including interviews to confirm the change in students' perception of remote classes in virtual reality geological data development and the effect of the classes, so data were analyzed through inductive categorization. The results of this study are as follows. First, students showed positive responses in terms of interest, utilization, and knowledge utilization as taking remote classes for developing geological data in virtual reality geological data. This is the result of showing the adaptability of diverse and flexible learning getting away from a fixed framework by motivating and encouraging students and inducing cooperation for communication. Second, students recognized distance education in the development of Virtual Reality geological data as 'Realistic hands-on learning process', 'Immersive learning process by motivation', and 'Learning process of acquiring knowledge in the field of earth science'.

Assessment of Stand-alone Utilization of Sentinel-1 SAR for High Resolution Soil Moisture Retrieval Using Machine Learning (기계학습 기반 고해상도 토양수분 복원을 위한 Sentinel-1 SAR의 자립형 활용성 평가)

  • Jeong, Jaehwan;Cho, Seongkeun;Jeon, Hyunho;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.571-585
    • /
    • 2022
  • As the threat of natural disasters such as droughts, floods, forest fires, and landslides increases due to climate change, social demand for high-resolution soil moisture retrieval, such as Synthetic Aperture Radar (SAR), is also increasing. However, the domestic environment has a high proportion of mountainous topography, making it challenging to retrieve soil moisture from SAR data. This study evaluated the usability of Sentinel-1 SAR, which is applied with the Artificial Neural Network (ANN) technique, to retrieve soil moisture. It was confirmed that the backscattering coefficient obtained from Sentinel-1 significantly correlated with soil moisture behavior, and the possibility of stand-alone use to correct vegetation effects without using auxiliary data observed from other satellites or observatories. However, there was a large difference in the characteristics of each site and topographic group. In particular, when the model learned on the mountain and at flat land cross-applied, the soil moisture could not be properly simulated. In addition, when the number of learning points was increased to solve this problem, the soil moisture retrieval model was smoothed. As a result, the overall correlation coefficient of all sites improved, but errors at individual sites gradually increased. Therefore, systematic research must be conducted in order to widely apply high-resolution SAR soil moisture data. It is expected that it can be effectively used in various fields if the scope of learning sites and application targets are specifically limited.

Analysis on the Changes in Abandoned Paddy Wetlands as a Carbon Absorption Sources and Topographic Hydrological Environment (탄소흡수원으로서의 묵논습지 변화와 지형수문 환경 분석)

  • Miok, Park;Sungwon, Hong;Bonhak, Koo
    • Land and Housing Review
    • /
    • v.14 no.1
    • /
    • pp.83-97
    • /
    • 2023
  • The study aims to provide an academic basis for the preservation and restoration of abandoned paddy wetland and the enhancement of its carbon accumulation function. First, the temporal change of the wetlands was analysed, and a typological classification system for wetlands was attempted with the goal of carbon reduction. The types of wetland were classified based on three variables: hydrological environment, vegetation, and carbon accumulation, with a special attention on the function of carbon accumulation. The types of abandoned paddy wetlands were classified into 12 categories based on hydrologic variables- either high or low levels of water inflow potential-, vegetation variables with either dominance of aquatic plants or terrestrial plants, and three carbon accumulation variables including organic matter production, soil organic carbon accumulation, and decomposition. It was found that the development period of abandoned paddy analyzed with aerial photographs provided by the National Geographic Information Institute happened between 2010 and 2015. In the case of the wetland in Daejeon 1 (DJMN01) farming stopped by 1990 and it appeared to be a similar structure to natural wetlands after 2010 . Over the past 40 years the abandoned paddy wetland changed to a high proportion of forests and agricultural lands. As time went by, such forests and agricultural lands tended to decrease rapidly and the lands were covered by artificial grass and other types of forests.

High-resolution Urban Flood Modeling using Cellular Automata-based WCA2D in the Oncheon-cheon Catchment in Busan, South Korea (셀룰러 오토마타 기반 WCA2D 모형을 이용한 부산 온천천 유역 고해상도 도시 침수 해석)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.587-599
    • /
    • 2023
  • As climate change increasesthe frequency and risk of flooding in major cities around theworld, the importance ofsimulation technology that can quickly and accurately analyze high-resolution 2D flooding information in large-scale areasis emerging. The physically-based approaches based on the Shallow Water Equations (SWE) often requires huge computer resources hindering high-resolution flood prediction. This study investigated the theoretical background of Weighted Cellular Automata 2D (WCA2D), which simulates spatio-temporal changes offlooding using transition rules and weight-based system, and assessed feasibility to simulate pluvial flooding in the urbancatchment, theOncheon-cheon catchmentinBusan, SouthKorea.Inaddition,the computation performancewas compared by applying versions using OpenComputing Language (OpenCL) andOpenMulti-Processing (OpenMP) parallel computing techniques. Simulationresultsshowed that the maximuminundation depthmap by theWCA2Dmodel cansimilarly reproduce historical inundation maps. Also, it can precisely simulate spatio-temporal changes of flooding extent in the urban catchment with complex topographic characteristics. For computation efficiency, parallel computing schemes, theOpenCLandOpenMP, improved the computation by about 8~14 and 5~6 folds respectively, compared to the sequential computation.

Characteristics Variation of the Sedimentary Environment in Winter Season around the Baramarae Beach of Anmyeondo Using Surface Sediment Analysis (표층퇴적물 분석을 통한 동계 안면도 바람아래해수욕장 주변의 퇴적환경 변화특성)

  • JANG, Dong-Ho;KIM, Jang-Soo;PARK, No-Wook
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.15-27
    • /
    • 2010
  • This study investigated the sedimentary environment changes in the Baramarae beach of Anmyeondo through spatio-temporal surface sediment analysis. In the winter season 2009, surface sediments were classified into 7 sedimentary facies such as gravel, sand, gravelly sand, gravelly muddy sand, muddy sand, silty sand, and sandy silt. Time-series analysis of average grain size from 2002 to 2009 revealed that the average grain size of sediments became finer and sorting was much worse. On the contrary, during the same period, the grain size became coarsening-trend and sorting was much better in beach area. These different grain size patterns resulted from the different change characteristics of beach and tidal flats. The southwestern beach area was connected to the open sea and thus fine sediments were removed by the environments with relatively high-energy. The sedimentation of fine sediments in the bay resulted from the tidal current action and the reduction of energy by the topographic effects. Fine sediments in the outer part of southwestern tidal flats could be explained such that the Seomot isle blocked ocean waves and as a result, low-energy environments accelerated sedimentations of fine sediments.

Seasonal Sedimentary Characteristics and Depositional Environments after the Construction of seawall on the Iwon Macrotidal Flat (방조제 건설 후 이원 대조차 조간대의 계절별 퇴적학적 특성 및 퇴적환경)

  • Kum, Byung-Cheol;Park, Eun-Young;Lee, Hi-Il;Oh, Jae-Kyung;Shin, Dong-Hyeok
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.615-628
    • /
    • 2004
  • In order to elucidate seasonal sedimentary characteristics and depositional environment after construction of seawall on macrotidal flat, a seasonal observations of surface sediments (total 450) and sedimentation rates on 4 transects have been investigated for 2 years. The eastern area of Iwon tidal flat, has been changed from semi-closed coast to open coast by construction of seawall, shows general seasonal changes similar to characteristics of open coast type, which represented both fining and bad sorted distribution due to deposition of fine sediments under low energy condition in the summer, and relatively coarser and better sorted distribution because of erosion of fine sediments in the winter. In considering angles of transects, distribution patterns of surface sediments, the northern and southern parts of eastern tidal flat are dominantly influenced by wave and tidal effects, respectively. As time goes by, the eastern tidal flat shows coarsening-trend of surface sediments caused by direct effect of tidal current, were and typhoon. Meanwhile the western area of seawall, which has been re-formed by construction seawall, is sheltered from northwesterly seasonal wind. The seasonal change pattern of western area of seawall is slightly different from that of eastern tidal flat. Mean grain size and sorting of surface sediments during spring is finer and worse than those during summer. This seasonal change pattern maybe influenced by topographic effects caused from the construction of seawall. In consideration of all result, the transport of fine sediments in the study area, which is supplied to limited sediments, shows clockwise circulation pattern that fine sediments are transported from the eastern tidal flat to the western area of seawall because of blocking of seawall in the winter and are transported reversed direction the summer. As a result, many changes have been observed in the study area after construction of seawall; however, this change is still in progress and is expected to need continuous monitoring.