• Title/Summary/Keyword: Topographic change

Search Result 218, Processing Time 0.027 seconds

GIS-based Debris Flow Risk Assessment (GIS 기반 토석류 위험도 평가)

  • Lee, Hanna;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.139-147
    • /
    • 2023
  • As heavy precipitation rates have increased due to climate change, the risk of landslides has also become greater. Studies in the field of disaster risk assessment predominantly focus on evaluating intrinsic importance represented by the use or role of facilities. This work, however, focused on evaluating risks according to the external conditions of facilities, which were presented via debris flow simulation. A random walk model (RWM) was partially improved and used for the debris flow simulation. The existing RWM algorithm contained the problem of the simulation results being overly concentrated on the maximum slope line. To improve the model, the center cell height was adjusted and the inertia application method was modified. Facility information was collected from a digital topographic map layer. The risk level of each object was evaluated by combining the simulation result and the digital topographic map layer. A risk assessment technique suitable for the polygon and polyline layers was applied, respectively. Finally, by combining the evaluated risk with the attribute table of the layer, a system was prepared that could create a list of objects expected to be damaged, derive various statistics, and express the risk of each facility on a map. In short, we used an easy-to-understand simulation algorithm and proposed a technique to express detailed risk information on a map. This work will aid in the user-friendly development of a debris flow risk assessment system.

Large-Scale Slope Stability Analysis Using Climate Change Scenario (2): Analysis of Application Results (기후변화 시나리오를 이용한 광역 사면안정 해석(2): 결과분석)

  • Oh, Sung-Ryul;Lee, Gi-Ha;Choi, Byoung-Seub;Lee, Kun-Hyuk;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.1-19
    • /
    • 2014
  • This study aims to assess the slope stability variation of Jeonbuk drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the previous research by Choi et al.(2013). For a large-scale slope stability analysis, we developed a GIS-based database regarding topographic, geologic and forestry parameters and also calculated daily maximum rainfall for the study period(1971~2100). Then, we assess slope stability variation of the 20 sub-catchments of Jeonbuk under the climate change scenario. The results show that the areal-average value of safety factor was estimated at 1.36(moderately stable) in spite of annual rainfall increase in the future. In addition, 7 sub-catchments became worse and 5 sub-catchments became better than the present period(1971~2000) in terms of safety factor in the future.

A Study on the Improvement of River Management System Based on Riverbed Change Data Management Program for Utilization of Advanced Bathymetry Data (선진화된 하천측량자료 활용 및 관리를 위한 하상변동 자료관리 프로그램 기반의 하도유지관리체계 개선에 관한 연구)

  • Jo, Myung-Hee;Kim, Kyung-Jun;Kim, Hyun-Jung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.115-125
    • /
    • 2013
  • The systematic management of river is difficult due to various environmental factors such as season and terrain deformation. Especially, river terrain are rapidly changing by natural and anthropogenic factors such as torrential rain during the summer and river development projects. Thus in this conditions, building the advanced river management system is an essential condition to support the ongoing management of survey data and to acquire data regularly through river terrain survey in order to maintain an active river. The need to build an efficient system have been increased through the enhancement and advancement of River Management Geographic Information Systems(RIMGIS). In this study, database design system and Riverbed Change Data Management Program was developed for systematic management of new river terrain survey data and the efficient use of river data dynamic changes. The key features are construction of river survey data, cross and longitudinal section monitoring and analysis of riverbed change data. Maintenance tasks which can be utilized in river-based architecture was constructed. The expected results are to be able to manage river systematically, and utilization of river topographic survey data efficiently for river maintenance work.

Time Series Analysis of Area of Deltaic Barrier Island in Nakdong River Using Landsat Satellite Image (Landsat 위성영상을 활용한 낙동강 삼각주 연안사주의 면적 시계열 분석)

  • Lee, Seulki;Yang, Mihee;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.457-469
    • /
    • 2016
  • Nakdong river barrage was affected by artificial interference such as construction of port, industrial complex and estuary barrage. This change in Nadong river lead to environmental changes and affected the ability of barrier islands. Therefore, it is decided that the observation of changes in the Nakdong river estuary is very important. In this paper, the topographic change of the Nakdong river barrage observe based on Landsat TM, ETM+ images from 1984 to 2015. In addition, this study tried to conduct a comparative analysis on the area for change of sandy sediment according to tide level. This results could estimate height and volume about sandy sediment accumulated on the lower sand dune. Also, these results are expected to be the basis for prediction of the changing topography of the sand dune. The area of the average change in region 1,2,3 was calculated as 3,015m2, 167,550m2, 14,596m2. This result is expected to be very useful for the continuous observation for sediment changes of Nakdong river.

A study on the Evaluation of Real-Time Map Update Technology for Automated Driving (자율주행 지원을 위한 정밀도로지도 갱신기술 평가를 위한 기준 도출 연구)

  • PARK, Yu-Kyung;KANG, Won-Pyung;CHOI, Ji-Eun;KIM, Byung-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.146-154
    • /
    • 2019
  • Recently, a system has been developed and applied to establish and utilize HD maps through R&D. The biggest problem, however, is the lack of a proper HD map update system, which requires the development and adoption of such a system as soon as possible. In addition, in the case of updating HD maps for automated driving, integrity and accuracy of maps are required for safe driving, so an test of these technologies and data quality is required. In April 2018, the Ministry of Land, Infrastructure and Transport implemented a project to 'Develop Technology to Demonstrate and Share the Instant Road Change Detection and Update Technology for automated driving. This paper analyzed the technology for updating map based on the investigation and analysis of relevant technology trends for the development of integrated demonstration and sharing technology of road change rapid detection and updating map technology, and put forward the criteria for road change rapid detection, integrated quality verification of update technology. It is expected that the results of this study will contribute to quality assurance of HD maps that support safety driving for automated vehicles.

Development of the Whole Body 3-Dimensional Topographic Radiotherapy System (3차원 전신 정위 방사선 치료 장치의 개발)

  • Jung, Won-Kyun;Lee, Byung-Yong;Choi, Eun-Kyung;Kim, Jong-Hoon;An, Seung-Do;Lee, Seok;Min, Chul-Ki;Park, Cham-Bok;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.63-71
    • /
    • 1999
  • For the purpose of utilization in 3-D conformal radiotherapy and whole body radiosurgery, the Whole Body 3-Dimensional Topographic Radiation Therapy System has been developed. Whole body frame was constructed in order to be installed on the couch. Radiopaque catheters were engraved on it for the dedicated coordinate system and a MeV-Green immobilizer was used for the patient setup by the help of side panels and plastic rods. By designing and constructing the whole body frame in this way, geometrical limitation to the gantry rotation in 3-D conformal radiotherapy could be minimized and problem which radiation transmission may be altered in particular incident angles was solved. By analyzing CT images containing information of patient setup with respect to the whole body frame, localization and coordination of the target is performed so that patient setup error may be eliminated between simulation and treatment. For the verification of setup, the change of patient positioning is detected and adjusted in order to minimize the setup error by means of comparison of the body outlines using 3 CCTV cameras. To enhance efficiency of treatment procedure, this work can be done in real time by watching the change of patient setup through the monitor. The method of image subtraction in IDL (Interactive Data Language) was used to visualize the change of patient setup. Rotating X-ray system was constructed for detecting target movement due to internal organ motion. Landmark screws were implanted either on the bones around target or inside target, and variation of target location with respect to markers may be visualized in order to minimize internal setup error through the anterior and the lateral image information taken from rotating X-ray system. For CT simulation, simulation software was developed using IDL on GUI(Graphic User Interface) basis for PC and includes functions of graphic handling, editing and data acquisition of images of internal organs as well as target for the preparation of treatment planning.

  • PDF

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

Future Prospects of Forest Type Change Determined from National Forest Inventory Time-series Data (시계열 국가산림자원조사 자료를 이용한 전국 산림의 임상 변화 특성 분석과 미래 전망)

  • Eun-Sook, Kim;Byung-Heon, Jung;Jae-Soo, Bae;Jong-Hwan, Lim
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.461-472
    • /
    • 2022
  • Natural and anthropogenic factors cause forest types to continuously change. Since the ratio of forest area by forest type is important information for identifying the characteristics of national forest resources, an accurate understanding of the prospect of forest type change is required. The study aim was to use National Forest Inventory (NFI) time-series data to understand the characteristics of forest type change and to estimate future prospects of nationwide forest type change. We used forest type change information from the fifth and seventh NFI datasets, climate, topography, forest stand, and disturbance variables related to forest type change to analyze trends and characteristics of forest type change. The results showed that the forests in Korea are changing in the direction of decreasing coniferous forests and increasing mixed and broadleaf forests. The forest sites that were changing from coniferous to mixed forests or from mixed to broadleaf forests were mainly located in wet topographic environments and climatic conditions. The forest type changes occurred more frequently in sites with high disturbance potential (high temperature, young or sparse forest stands, and non-forest areas). We used a climate change scenario (RCP 8.5) to establish a forest type change model (SVM) to predict future changes. During the 40-year period from 2015 to 2055, the SVM predicted that coniferous forests will decrease from 38.1% to 28.5%, broadleaf forests will increase from 34.2% to 38.8%, and mixed forests will increase from 27.7% to 32.7%. These results can be used as basic data for establishing future forest management strategies.

The Simulation of Flood Inundation of Namdae Stream with GIS-based FLUMEN model (GIS 기반 FLUMEN 모형을 이용한 남대천 홍수범람 모의실험)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Spatial Information Research
    • /
    • v.18 no.2
    • /
    • pp.25-34
    • /
    • 2010
  • This study simulated flood inundation each frequency rainfall using GIS spatial information and FLUMEN model for part of Muju-Namdae Stream. To create geomorphology for the analysis of flood inundation, Triangle Irregular Network(TIN) was constructed using GIS spatial interpolation method based on digital topographic map and river profile data, unique data source to represent real topography of the river areas. And also flood inundation was operated according to the levee collapse to consider extremely flood damage scenarios. As the analysis of result, the inundation area in the left levee collapse showed more high as 3.13, 3.69, and 4.17 times comparing with one of right levee for 50, 100, and 200 year frequency rainfall and showed 1.00, 2.15, and 3.34 times comparing with one of right levee in the inundation depth with over 1.0 meter, which can cause casualties. As the analysis of inundation area of the inundation depth with over 1.0 meter, which can cause casualties in left levee collapse, it increased more high as 263% and 473% when 50 year frequency change into 100 and 200 year frequency. Also As the analysis of inundation area of the inundation depth with over 1.0 meter in right levee collapse, it increased high as 123% and 142% when 50 year frequency change into 100 and 200 year frequency. Especially, the inundation area of the inundation depth with 3.0~3.5m showed more high as 263% and 489% when 50 year frequency change into 100 and 200 year frequency. It is expected that flood inundation map of this paper could be important decision making data to establish land use planning and water treatment measures.

Analysis of Shoreline Change Using Multi-temporal Remote Sensed Data on Songjeong Beach, Busan (다중시기 원격탐사 자료를 이용한 부산 송정해수욕장의 해안선 변화 분석)

  • Jang, Dong-Ho;Kim, Jang-Soo;Baek, Seung-Gyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.59-71
    • /
    • 2012
  • This research was carried out to analyze long-term shoreline change on Busan Songjeong Beach using multi-temporal remote sensed data, GPS survey data and grain size analysis. As a result of multi-temporal satellite imagery analysis, the beach was stable status till early 2000s, but the erosion occurred over whole beach after the construction of shore protection road since 2000. In the result of DEM analysis, the elevation of beach reduced and the slope of berm increased after construction of shore protection road along the coast, this means the erosion environment was dominant on the beach. But the sedimentation was slightly stronger than the erosion in northern region of the beach, then the slope of berm was gentle. In the result of grain size analysis using in-situ samples, the coarsening-trend was found in southeastern region (Line E) of the beach, it is caused by strong wave energy from the outer sea. Consequently, major causes of the beach erosion in the study area were the interception of sand supply from a dune owing to shore protection road construction and scouring phenomenon by strong wave energy in southeastern region of the beach. If the topographic or artificial change will not occur in the future, the erosion in this area will continue. Therefore the prevention measures are required.