• Title/Summary/Keyword: Topics Modeling analysis

Search Result 451, Processing Time 0.026 seconds

Topic Modeling Analysis of Franchise Research Trends Using LDA Algorithm (LDA 알고리즘을 이용한 프랜차이즈 연구 동향에 대한 토픽모델링 분석)

  • YANG, Hoe-Chang
    • The Korean Journal of Franchise Management
    • /
    • v.12 no.4
    • /
    • pp.13-23
    • /
    • 2021
  • Purpose: This study aimed to derive clues for the franchise industry to overcome difficulties such as various legal regulations and social responsibility demands and to continuously develop by analyzing the research trends related to franchises published in Korea. Research design, data and methodology: As a result of searching for 'franchise' in ScienceON, abstracts were collected from papers published in domestic academic journals from 1994 to June 2021. Keywords were extracted from the abstracts of 1,110 valid papers, and after preprocessing, keyword analysis, TF-IDF analysis, and topic modeling using LDA algorithm, along with trend analysis of the top 20 words in TF-IDF by year group was carried out using the R-package. Results: As a result of keyword analysis, it was found that businesses and brands were the subjects of research related to franchises, and interest in service and satisfaction was considerable, and food and coffee were prominently studied as industries. As a result of TF-IDF calculation, it was found that brand, satisfaction, franchisor, and coffee were ranked at the top. As a result of LDA-based topic modeling, a total of 12 topics including "growth strategy" were derived and visualized with LDAvis. On the other hand, the areas of Topic 1 (growth strategy) and Topic 9 (organizational culture), Topic 4 (consumption experience) and Topic 6 (contribution and loyalty), Topic 7 (brand image) and Topic 10 (commercial area) overlap significantly. Finally, the trend analysis results for the top 20 keywords with high TF-IDF showed that 10 keywords such as quality, brand, food, and trust would be more utilized overall. Conclusions: Through the results of this study, the direction of interest in the franchise industry was confirmed, and it was found that it was necessary to find a clue for continuous growth through research in more diverse fields. And it was also considered an important finding to suggest a technique that can supplement the problems of topic trend analysis. Therefore, the results of this study show that researchers will gain significant insights from the perspectives related to the selection of research topics, and practitioners from the perspectives related to future franchise changes.

Research Trend Analysis of the Retail Industry: Focusing on the Department Store (유통업태 연구동향 분석: 백화점을 중심으로)

  • Hoe-Chang YANG
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.5
    • /
    • pp.45-55
    • /
    • 2023
  • Purpose: As one of the continuous studies on the offline distribution industry, the purpose of this study is to find ways for offline stores to respond to the growth of online shopping by identifying research trends on department stores. Research design, data and methodology: To this end, this study conducted word frequency analysis, word co-occurrence frequency analysis, BERTopic, LDA, and dynamic topic modeling using Python 3.7 on a total of 551 English abstracts searched with the keyword 'department store' in scienceON as of October 10, 2022. Results: The results of word frequency analysis and co-occurrence frequency analysis revealed that research related to department stores frequently focuses on factors such as customers, consumers, products, satisfaction, services, and quality. BERTopic and LDA analyses identified five topics, including 'store image,' with 'shopping information' showing relatively high interest, while 'sales systems' were observed to have relatively lower interest. Conclusions: Based on the results of this study, it was concluded that research related to department stores has so far been conducted in a limited scope, and it is insufficient to provide clues for department stores to secure competitiveness against online platforms. Therefore, it is suggested that additional research be conducted on topics such as the true role of department stores in the retail industry, consumer reinterpretation, customer value and lifetime value, department stores as future retail spaces, ethical management, and transparent ESG management.

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF

Modeling Domestic News Topics for Mongolia: Focusing on Changes in Press on Diplomatic Relations between the two countries after the establishment of Diplomatic ties between Korea and Mongolia (몽골에 대한 국내 뉴스 토픽 모델링: 한몽 수교 이후 양국 관계 보도 양상 변화를 중심으로)

  • Yoon, Ji-Soo;Jin, XianMei
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.37-46
    • /
    • 2022
  • During the study, big data analysis was conducted focusing on domestic media reports related to Mongolia. The Latent Dirichlet Allocation(LDA) topic modeling was conducted using 130,000 articles with the keyword 'Mongolia' as the target of analysis. As a result of deriving and examining major topics for each period, there were disappearing subjects as the diplomacy level was raised, but most appeared in the beginning were remained and additional issues in various fields were shown.

Analysis of Topics Related to Population Aging Using Natural Language Processing Techniques (자연어 처리 기술을 활용한 인구 고령화 관련 토픽 분석)

  • Hyunjung Park;Taemin Lee;Heuiseok Lim
    • Journal of Information Technology Services
    • /
    • v.23 no.1
    • /
    • pp.55-79
    • /
    • 2024
  • Korea, which is expected to enter a super-aged society in 2025, is facing the most worrisome crisis worldwide. Efforts are urgently required to examine problems and countermeasures from various angles and to improve the shortcomings. In this regard, from a new viewpoint, we intend to derive useful implications by applying the recent natural language processing techniques to online articles. More specifically, we derive three research questions: First, what topics are being reported in the online media and what is the public's response to them? Second, what is the relationship between these aging-related topics and individual happiness factors? Third, what are the strategic directions and implications for benchmarking discussed to solve the problem of population aging? To find answers to these, we collect Naver portal articles related to population aging and their classification categories, comments, and number of comments, including other numerical data. From the data, we firstly derive 33 topics with a semi-supervised BERTopic by reflecting article classification information that was not used in previous studies, conducting sentiment analysis of comments on them with a current open-source large language model. We also examine the relationship between the derived topics and personal happiness factors extended to Alderfer's ERG dimension, carrying out additional 3~4-gram keyword frequency analysis, trend analysis, text network analysis based on 3~4-gram keywords, etc. Through this multifaceted approach, we present diverse fresh insights from practical and theoretical perspectives.

Text Analysis on the Research Trends of Nature Restoration in Korea (텍스트 분석을 활용한 국내 자연환경복원 연구동향 분석)

  • Lee, Gil-sang;Jung, Yee-rim;Song, Young-keun;Lee, Sang-hyuk;Son, Seung-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.2
    • /
    • pp.29-42
    • /
    • 2024
  • As a global response to climate and biodiversity challenges, there is an emphasis on the conservation and restoration of ecosystems that can simultaneously reduce carbon emissions and enhance biodiversity. This study comprised a text analysis and keyword extraction of 1,100 research papers addressing nature restoration in Korea, aiming to provide a quantative and systematic evaluation of domestic research trends in this field. To discern the major research topics of these papers, topic modeling was applied and correlations were established through network analysis. Research on nature restoration exhibited a mainly upward trend in 2002-2022 but with a slight recent decline. The most common keywords were "species," "forest," and "water". Research topics were broadly classified into (1) predictions of habitat size and species distribution, (2) the conservation and utilization of natural resources in urban areas, (3) ecosystems and landscape managements in protected areas, (4) the planting and growth of vegetation, and (5) habitat formation methods. The number of studies on nature restoration are increasing across various domains in Korea, with each domain experiencing professional development.

A comparative study of the revised 2022 Korea mathematics curriculum and the international baccalaureate diploma program mathematics: Applications and interpretation standard level - focusing on high school statistics area

  • Soo Bin Lee;Ah Ra Cho;Oh Nam Kwon
    • Research in Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.49-73
    • /
    • 2024
  • This study aims to explore the direction of high school statistics education in Korea through a comparative analysis between the revised 2022 Korea mathematics curriculum and the IBDP Mathematics: Application & Interpretation Standard Level (IBDP AI SL) Curriculum and textbooks. The study seeks to investigate the Statistics unit of the two curricula, compare chapter structures and content elements of textbooks, and explore exercises on modeling and utilization of technology tools. The results are as follows: First, the IBDP AI SL statistics covered a broader range of topics. Second, exercises in Korean high school textbooks typically inquire about one or two questions in each topic, whereas the IBDP AI SL textbook's exercises present a real-life scenario on all relevant topics through sub-questions. Third, the Korean textbook guides the utilization of technology tools only in exercises presented after completing the entire chapter or where the calculation is complex. Also, there were only a handful of modeling exercises in the Korean textbook in contrast to most of the lessons and exercises were modeling exercises in the IBDP AI SL textbook. If these findings can be integrated into teaching practices in Korea, it will provide a direction for statistics education in Korean high schools.

Research Trends Analysis on ESG Using Unsupervised Learning

  • Woo-Ryeong YANG;Hoe-Chang YANG
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.3
    • /
    • pp.47-66
    • /
    • 2023
  • Purpose: The purpose of this study is to identify research trends related to ESG by domestic and overseas researchers so far, and to present research directions and clues for the possibility of applying ESG to Korean companies in the future and ESG practice through comparison of derived topics. Research design, data and methodology: In this study, as of October 20, 2022, after searching for the keyword 'ESG' in 'scienceON', 341 domestic papers with English abstracts and 1,173 overseas papers were extracted. For analysis, word frequency analysis, word co-occurrence frequency analysis, BERTopic, LDA, and OLS regression analysis were performed to confirm trends for each topic using Python 3.7. Results: As a result of word frequency analysis, It was found that words such as management, company, performance, and value were commonly used in both domestic and overseas papers. In domestic papers, words such as activity and responsibility, and in overseas papers, words such as sustainability, impact, and development were included in the top 20 words. As a result of analyzing the co-occurrence frequency of words, it was confirmed that domestic papers were related mainly to words such as company, management, and activity, and overseas papers were related to words such as investment, sustainability, and performance. As a result of topic modeling, 3 topics such as named ESG from the corporate perspective were derived for domestic papers, and a total of 7 topics such as named sustainable investment for overseas papers were derived. As a result of the annual trend analysis, each topic did not show a relatively increasing or decreasing tendency, confirming that all topics were neutral. Conclusions: The results of this study confirmed that although it is desirable that domestic papers have recently started research on consumers, the subject diversity is lower than that of overseas papers. Therefore, it is suggested that future research needs to approach various topics such as forecasting future risks related to ESG and corporate evaluation methods.

Exploring user experience factors through generational online review analysis of AI speakers (인공지능 스피커의 세대별 온라인 리뷰 분석을 통한 사용자 경험 요인 탐색)

  • Park, Jeongeun;Yang, Dong-Uk;Kim, Ha-Young
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.193-205
    • /
    • 2021
  • The AI speaker market is growing steadily. However, the satisfaction of actual users is only 42%. Therefore, in this paper, we collected reviews on Amazon Echo Dot 3rd and 4th generation models to analyze what hinders the user experience through the topic changes and emotional changes of each generation of AI speakers. By using topic modeling analysis techniques, we found changes in topics and topics that make up reviews for each generation, and examined how user sentiment on topics changed according to generation through deep learning-based sentiment analysis. As a result of topic modeling, five topics were derived for each generation. In the case of the 3rd generation, the topic representing general features of the speaker acted as a positive factor for the product, while user convenience features acted as negative factor. Conversely, in the 4th generation, general features were negatively, and convenience features were positively derived. This analysis is significant in that it can present analysis results that take into account not only lexical features but also contextual features of the entire sentence in terms of methodology.

Image Analysis and Management Strategy for The National Science Museum Utilizing SNS Big Data Analysis (SNS 빅데이터 분석을 활용한 국립과학관에 대한 이미지 분석과 경영전략 제안)

  • Shin, Seongyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.81-89
    • /
    • 2020
  • The purpose of this study is to investigate science consumers' perceptions of the National Science Museum and suggest effective management strategies for the museum. Research questions were established and the analyses were conducted to achieve the research goals. The collection and analysis of the data were conducted through a new approach to image analysis that combines qualitative and quantitative methods. First, the image of the concept of science was derived from science consumers (adults, undergraduate and graduate students) through a qualitative research method (group-interviewing), and then text analysis was conducted. Second, quantitative research was conducted through LDA (Latent Dirichlet Allocation)-based topical modeling of 63,987 words extracted from 12,920 titles of blog postings from one of the most heavily-trafficked portal sites in Korea. The results of this study indicate that the perception of science differs according to the characteristics of the respondents. Further, topic-modeling extracted 20 topics from the blog posting titles and the topics were condensed into seven factors. Detailed discussions and managerial implications are provided in the conclusion section.