As civil infrastructure has continued to age worldwide, its structural integrity has been threatened owing to material deteriorations and continual loadings from the external environment. Structural Health Monitoring (SHM) has emerged as a cost-efficient method for ensuring structural safety and durability. As SHM research has gradually addressed an increasing number of structure-related problems, it has become difficult to understand the changing research topic trends. Although previous review papers have analyzed research trends on specific SHM topics, these studies have faced challenges in providing (1) consistent insights regarding macroscopic SHM research trends, (2) empirical evidence for research topic changes in overall SHM fields, and (3) methodological validations for the insights. To overcome these challenges, this study proposes a framework tailored to capturing the trends of research topics in SHM through a bibliometric and network analysis. The framework is applied to track SHM research topics over 15 years by identifying both quantitative and relational changes in the author keywords provided from representative SHM journals. The results of this study confirm that overall SHM research has become diversified and multi-disciplinary. Especially, the rapidly growing research topics are tightly related to applying machine learning and computer vision techniques to solve SHM-related issues. In addition, the research topic network indicates that damage detection and vibration control have been both steadily and actively studied in SHM research.
Purpose - This is an exploratory study that aims to apply text mining techniques, which computationally extracts words from the large-scale text data, to legal documents to quantify trade claim contents and enables statistical analysis. Design/methodology - This is designed to verify the validity of the application of text mining techniques as a quantitative methodology for trade claim studies, that have relied mainly on a qualitative approach. The subjects are 81 cases of arbitration and court judgments from China published on the website of the UNCITRAL where the CISG was applied. Validation is performed by comparing the manually analyzed result with the automatically analyzed result. The manual analysis result is the cluster analysis wherein the researcher reads and codes the case. The automatic analysis result is an analysis applying text mining techniques to the result of the cluster analysis. Topic modeling and semantic network analysis are applied for the statistical approach. Findings - Results show that the results of cluster analysis and text mining results are consistent with each other and the internal validity is confirmed. And the degree centrality of words that play a key role in the topic is high as the between centrality of words that are useful for grasping the topic and the eigenvector centrality of the important words in the topic is high. This indicates that text mining techniques can be applied to research on content analysis of trade claims for statistical analysis. Originality/value - Firstly, the validity of the text mining technique in the study of trade claim cases is confirmed. Prior studies on trade claims have relied on traditional approach. Secondly, this study has an originality in that it is an attempt to quantitatively study the trade claim cases, whereas prior trade claim cases were mainly studied via qualitative methods. Lastly, this study shows that the use of the text mining can lower the barrier for acquiring information from a large amount of digitalized text.
최근 디지털 사회의 도래로 다양한 데이터가 폭발적으로 증가하고, 그중 문헌 내 주제어를 도출하는 토픽 모델링에 관한 연구가 활발히 진행되고 있다. 본 논문의 연구목표는 토픽 모델링 방법 중 하나인 DTM(Dynamic Topic Model) 모델을 적용해 D.N.A.(Data, Network, A.I) 분야에 대한 연구동향을 탐색하는데 있다. 실험 데이터는 최근 6년간(2015~2020) ICT(Information and Communication Technology) 분야 중 기술대분류가 SW·AI에 해당하는 연구과제 1,519개 사업에 대해 DTM 모델을 적용하였다. 실험결과로, D.N.A. 분야의 기술 키워드 Big data, Cloud, Artificial Intelligence와 확장된 의미의 기술 키워드 Unstructured, Edge Computing, Learning, Recognition 등이 매년 연구에 표출되었으며, 해당 키워드 들이 특정 연구과제에 종속되지 않고 다른 연구과제에서도 포괄적으로 연구되고 있음을 확인하였다. 끝으로 본 논문의 연구결과는 향후 D.N.A. 분야에 대한 정책기획·과제기획 등 연구개발 기획 과정과 기업의 기술 확보전략·마케팅 전략 등 다양한 곳에 활용될 수 있을 것으로 기대한다.
대부분의 인터넷 쇼핑몰은 자사 고객의 관심 분야를 파악하고 이를 상품 추천에 효과적으로 활용하기 위해 많은 노력을 기울이고 있다. 하지만 고객이 회원 가입 시 직접 입력한 개인 정보는 신뢰하기가 어렵고, 고객의 구매 패턴을 통해 파악한 관심 분야 정보는 자사 사이트 내에 진입한 이후에만 보인 한정된 패턴이라는 측면에서 해당 고객의 다양한 관심분야를 제대로 나타낸다고 보기 어렵다. 이러한 한계를 극복하기 위해 본 연구에서는 고객의 평소 인터넷 사용 기록을 통해 최근 방문 사이트들의 주제를 분석함으로써, 고객의 실제 관심 분야를 파악할 수 있는 방안을 제시하였다. 또한 토픽 분석을 통해 각 사이트의 주제를 도출하고 도출된 주제를 다시 동시 방문자 관점에서 군집화 함으로써, 고객 관점에서 의미가 있는 상위 수준의 새로운 테마를 발굴하기 위한 방법론을 제안하였다. 연구의 특징은 유사주제 중심의 군집화라는 기존 연구와는 달리 사용자 관점의 관심주제 중심 군집화라 할 수 있다. 향후 사용자 중심의 카테고리 설계를 비롯한 새로운 관점의 고객군 정의 등 보다 높은 차원의 마케팅 전략 수립에 활용이 가능할 것으로 기대된다. 사용자 관점의 이슈 군집화 과정은 크롤링, 토픽 분석, 액세스 패턴 분석, 네트워크 병합, 네트워크 변환 및 군집화와 같은 여섯 가지 주요단계로 구성되어있다. 이를 위해 텍스트 마이닝과 소셜 네트워크 분석 기법을 활용한 비정형 텍스트를 기반으로한 빅데이터의 활용 방법을 모색하였다. 제안 방법론의 실무 적용 가능성을 평가하기 위해, 국내 최대 포털 뉴스 사이트의 방문자 2,177명의 1년간 방문 기록과 뉴스기사 대한 분석을 수행하고 그 결과를 요약하여 제시하였다.
본 연구는 네트워크 분석을 활용하여 대학생 인성 관련 연구의 동향을 파악하고 향후 연구 방향의 시사점을 제공하는데 그 목적이 있다. 이러한 연구목적을 위해 국내 학술지에 게재된 대학생 인성 관련 논문 194편을 대상으로 하였다. 연구결과를 정리하면 다음과 같다. 첫째, 대학생 인성 관련 연구는 2004년부터 발표되기 시작하여 2012년에 소폭 상승하였고, 2015년부터 상승곡선을 이어가다 2017년에 정점을 찍은 후, 하향추세인 것으로 확인된다. 둘째, 연결 중심성과 매개 중심성 분석에서 공통적으로 가장 높은 중심성을 가진 핵심 키워드는 '사회'와 '함양'이었다. 셋째, 1기(2004년-2010년)에는 개인적 차원과 인성의 인지적인 측면의 키워드, 2기(2011년-2015년)에는 사회적인 차원과 인성의 정서적인 측면의 키워드, 3기(2016년-2020년)에는 사회적인 차원과 인성의 인지·정서·행동적인 측면의 키워드가 핵심적이었다. 넷째, 토픽모델링 분석결과, 능력, 생활, 대인, 만족, 적응의 키워드로 이루어진 토픽 2와 역량, 도덕, 시민, 사회, 실천으로 이루어진 토픽 1이 가장 높은 비중을 차지하였다. 다섯째, 1기에는 토픽 4 단독, 2기에는 토픽 1과 토픽 2의 순으로, 3기에는 토픽 2와 토픽 1의 순으로 높은 비중을 차지하는 것으로 나타났다. 본 연구는 대학생 인성 관련 연구에 유용한 근거자료가 될 것이다.
대학의 교양교과 주제가 다양한 영역으로 분화되고 복합적인 주제로 융합되면서 점차 교양교육의 주제를 파악하는 것이 어려워지고 있다. 이 연구의 목표는 A 대학의 교양교육과정으로 개설되어 있는 교과목의 주제적 영역을 계량정보학적으로 분석하여 시각화하는 것이다. 분석을 위하여 수집된 계획서는 총 214개이며 분석에 적용된 요소는 교과목명, 교과개요, 목표, 주별 수업계획이다. 분석 대상에서 추출된 주제어는 모두 278종이며 총 8개의 주제 클러스터로 군집화 되었다. 주제 클러스터간 관계를 네트워크기법으로 분석한 결과 개인적 영역, 사회적 영역으로 나뉘어지는 것으로 나타났다. 개인적 영역은 다시 14개 하위 주제 클러스터로, 사회적 영역은 11개 하위 주제 클러스터로 분류되었다. 개인적 영역에서는 '언어', '과학', '인성'이 주요 주제 클러스터로 파악되었고 사회적 영역에서는 '다문화' 주제 클러스터가 4개의 다른 주제 클러스터와 다각적인 관계를 맺고 있는 것으로 분석되었다. 주제 네트워크로 교양교과목의 주제 영역을 분석한 방법은 교양교육을 강화하고 개선하거나 대학도서관이 교양교육을 위한 장서개발을 하는데 필요한 기초자료를 생산하는 목적으로 활용될 수 있을 것이다.
본 연구는 주소를 둘러싼 국내외 환경변화 속에서 관계 법령 개정 및 시범사업 등에 의해 본격적으로 도입이 이루어지고 있는 사물주소에 대한 언론보도를 분석하였다. 네이버 뉴스 플랫폼에서 2018년 4월부터 2020년 9월까지 기간동안 '사물주소'라고 검색하여 수집된 언론보도기사의 제목과 원문을 수집하여 토픽 모델링 및 네트워크 분석을 실시하였다. 분석 결과, 보도주제는 4가지 유형으로 '사물주소체계 추진', '사물주소 부여대상 실증', '도로명주소 사용 개선', '주소 활성화를 위한 교육·홍보'로 나타났으며, 해당 기간동안 '사물주소 부여 실증' 주제가 주요 의제였음을 확인하였다. 분석 결과를 행정안전부의 「제3차 주소정책 기본계획(2018-2022)」과 비교하여 정책적 시사점을 제시하였다.
본 연구는 융합산업으로 각광받고 있는 헬스케어 분야를 중심으로 기술융합을 이루는 요소기술과 핵심기술을 파악하여 기술융합 현상을 분석하고자 하였으며, 이를 위해 2011년부터 2020년까지의 국내 특허 중 헬스케어와 관련 있는 특허 총 376개를 수집하여 토픽모델링과 네트워크 분석을 수행하였다. 첫째, 토픽모델링 분석 결과 "데이터수집·분석", "생체신호측정", "건강관리", "디지털정보 수집 및 전송", "진단·치료", "측정 진단장치" 총 6개의 주요 토픽이 도출되었다. 둘째, 앞서 분석한 토픽별로 네트워크 분석을 수행하여 기술간 연결망 구조를 파악한 후 기술융합 특성을 확인하고, 중심성 지표를 통해 핵심기술을 도출하였다. 본 연구의 핵심인 국내 헬스케어의 핵심·요소기술동향 및 기술융합도 분석결과는, 기업의 신규 가치창출을 위한 제품·서비스개발 방향성을 수립하거나, 학계 및 정부의 헬스케어 산업을 육성·지원하기 위한 전략 및 정책적인 방향성을 수립하는데 기초자료로 활용될 수 있을 것이다.
Journal of Information Technology Applications and Management
/
제22권3호
/
pp.83-103
/
2015
The rapid development of internet technologies and social media over the last few years has generated a huge amount of unstructured text data, which contains a great deal of valuable information and issues. Therefore, text mining-extracting meaningful information from unstructured text data-has gained attention from many researchers in various fields. Topic analysis is a text mining application that is used to determine the main issues in a large volume of text documents. However, it is difficult to identify related issues or meaningful insights as the number of issues derived through topic analysis is too large. Furthermore, traditional issue-clustering methods can only be performed based on the co-occurrence frequency of issue keywords in many documents. Therefore, an association between issues that have a low co-occurrence frequency cannot be recognized using traditional issue-clustering methods, even if those issues are strongly related in other perspectives. Therefore, in this research, a methodology to reorganize social issues from a research and development (R&D) perspective using social network analysis is proposed. Using an R&D perspective lexicon, issues that consistently share the same R&D keywords can be further identified through social network analysis. In this study, the R&D keywords that are associated with a particular issue imply the key technology elements that are needed to solve a particular issue. Issue clustering can then be performed based on the analysis results. Furthermore, the relationship between issues that share the same R&D keywords can be reorganized more systematically, by grouping them into clusters according to the R&D perspective lexicon. We expect that our methodology will contribute to establishing efficient R&D investment policies at the national level by enhancing the reusability of R&D knowledge, based on issue clustering using the R&D perspective lexicon. In addition, business companies could also utilize the results by aligning the R&D with their business strategy plans, to help companies develop innovative products and new technologies that sustain innovative business models.
디지털 전환의 핵심 인프라로서 데이터·네트워크·인공지능(D.N.A.) 분야의 확산과 유망 산업의 등장은 경제 전반에 걸쳐 활발한 디지털 혁신의 기반이 되고 있다. 본 연구에서는 텍스트마이닝 방법론을 적용하여 WoS 데이터베이스의 SCIE 급 색인에 해당하는 연구의 초록, 출판연도 및 연구분야를 입력변수로 활용하여 주요 토픽을 도출하였다. 우선, 단어 출현 빈도에 기반한 TF 및 TF-IDF 분석을 통해 주요 키워드를 확인하고, 이어서 g-DMR(Generalized Dirichlet-Multinomial Regression)을 이용하여 토픽 모델링을 수행하였는데, 다양한 형태의 변수를 메타정보로 활용 가능한 해당 토픽 모형의 이점으로 단순하게 토픽을 도출하는 것 이상의 의미를 적절하게 탐색할 수 있었다. 분석 결과에 따르면, 비즈니스 인텔리전스, 제조 생산 시스템, 서비스 가치 창출, 원격 진료, 디지털 교육 등의 토픽들이 디지털 전환에서 주요 연구주제인 것으로 식별되었다. 토픽 모델링의 결과를 요약하자면, 1) COVID-19 이후 비즈니스 인텔리전스를 주제로 하는 연구가 전 영역에서 활발하게 수행되고 있으며, 2) 제조 분야에서 지능형 제조 솔루션 및 메타버스 등의 이슈가 등장함에 따라 제조 생산 시스템에 관한 주제가 다시 한번 주목받고 있음을 확인하였다. 마지막으로, 3) 주제어 자체는 기술과 서비스의 측면에서 분리하여 볼 수 있지만, 다수의 연구에서 해당 기술들을 접목하여 적용된 다양한 서비스를 포괄적으로 다루고 있으므로 이를 별개로 해석하는 것이 바람직하지 못하다는 점을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.