• 제목/요약/키워드: Topic Keywords

검색결과 387건 처리시간 0.022초

Analysis of Laughter Therapy Trend Using Text Network Analysis and Topic Modeling

  • LEE, Do-Young
    • 웰빙융합연구
    • /
    • 제5권4호
    • /
    • pp.33-37
    • /
    • 2022
  • Purpose: This study aims to understand the trend and central concept of domestic researches on laughter therapy. For the analysis, this study used total 72 theses verified by inputting the keyword 'laughter therapy' from 2007 to 2021. Research design, data and methodology: This study performed the development and analysis of keyword co-occurrence network, analyzed the types of researches through topic modeling, and verified the visualized word cloud and sociogram. The keyword data that was cleaned through preprocessing, was analyzed in the method of centrality analysis and topic modeling through the 1-mode matrix conversion process by using the NetMiner (version 4.4) Program. Results: The keywords that most appeared for last 14 years were laughter therapy, depression, the elderly, and stress. The five topics analyzed in thesis data from 2007 to 2021 were therapy, cognitive behavior, quality of life, stress, and the elderly. Conclusions: This study understood the flow and trend of research topics of domestic laughter therapy for last 14 years, and there should be continuous researches on laughter therapy, which reflects the flow of time in the future.

Analysis of Secondary Battery Trends Using Topic Modeling: Focusing on Solid-State Batteries

  • Chunghyun Do;Yong Jin Kim
    • Asian Journal of Innovation and Policy
    • /
    • 제12권3호
    • /
    • pp.345-362
    • /
    • 2023
  • As the widespread adoption and proliferation of electric vehicles continue, the secondary battery market is experiencing rapid growth. However, lithium-ion batteries, which constitute a majority of secondary batteries, present high risks of fire and explosion. Solid-state batteries are thus garnering attention as the next-generation batteries since they eliminate fire hazards and significantly reduce the risk of explosions. Against this background, the study aimed to analyze research trends and provide insights by examining 2,927 domestic papers related to solid-state batteries over the past decade (2013-2022). Specifically, we used topic modeling to extract major keywords associated with solid-state batteries research and to explore the network characteristics across major topics. The changes in research on solid-state batteries were analyzed in-depth by calculating topic dominance by year. The findings provide an overview of the emerging trends in domestic solid-state battery research, and might serve as a valuable reference in shaping long-term research directions.

토픽모델링을 이용한 도시 분야 연구동향 분석 (An Analysis of the Research Trends for Urban Study using Topic Modeling)

  • 장선영;정승현
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.661-670
    • /
    • 2021
  • 연구동향은 시기별 연구주제에 대한 중요도 판단과 부족한 연구 분야를 파악하고 신규 분야를 발굴하는데 유용하게 활용될 수 있다. 본 연구에서는 인구집중과 도시화로 인해 다양한 문제가 발생하고 있는 도시공간을 대상으로 한 논문들을 대상으로 시기별 연구동향을 분석하였다. 이를 위해 2002년부터 2019년 사이에 게재된 한국학술지인용색인(KCI)에 등재된 논문의 초록을 대상으로 데이터마이닝 기법 중 하나인 토픽모델링 분석을 수행하였다. 토픽모델링은 전체 내용에서 일정한 패턴을 발견해낼 수 있는 알고리즘 기반의 텍스트마이닝 기법으로 방대한 문헌에서 주제를 찾아내고 군집하는데 용이하다. 본 연구에서는 키워드 빈도, 연도별 경향, 토픽 도출, 토픽별 군집, 토픽유형별 경향에 대한 분석을 실시하였다. 그 결과 먼저 도시재생 분야연구가 지속적으로 증가되고 있고 앞으로도 세부 주제가 확대될 수 있는 분야로 분석되었다. 그리고 도시재생 주제는 이제 정규 연구분야로 자리 잡고 있는 것으로 파악되었다. 반면, 개발/성장과 에너지/환경과 같은 주제는 정체기에 들어간 것으로 분석되었다. 본 연구는 국내 전체 도시분야 연구를 대상으로 데이터마이닝 기법인 토픽모델링을 이용하여 키워드 간 연관성과 경향을 함께 분석하였다는 데 의의가 있다.

디스크립터 자동 할당을 위한 저자키워드의 재분류에 관한 실험적 연구 (A Study on the Reclassification of Author Keywords for Automatic Assignment of Descriptors)

  • 김판준;이재윤
    • 정보관리학회지
    • /
    • 제29권2호
    • /
    • pp.225-246
    • /
    • 2012
  • 본 연구는 국내 주요 학술 DB의 검색서비스에서 제공되고 있는 저자키워드(비통제키워드)의 재분류를 통하여 디스크립터(통제키워드)를 자동 할당할 수 있는 가능성을 모색하였다. 먼저 기계학습에 기반한 주요 분류기들의 특성을 비교하는 실험을 수행하여 재분류를 위한 최적 분류기와 파라미터를 선정하였다. 다음으로, 국내 독서 분야 학술지 논문들에 부여된 저자키워드를 학습한 결과에 따라 해당 논문들을 재분류함으로써 키워드를 추가로 할당하는 실험을 수행하였다. 또한 이러한 재분류 결과에 따라 새롭게 추가된 문헌들에 대하여 통제키워드인 디스크립터와 마찬가지로 동일 주제의 논문들을 모아주는 어휘통제 효과가 있는지를 살펴보았다. 그 결과, 저자키워드의 재분류를 통하여 디스크립터를 자동 할당하는 효과를 얻을 수 있음을 확인하였다.

소셜데이터에 나타난 고창군의 농촌관광 이미지와 주요 활동공간 - '고창군 여행' 키워드를 중심으로 - (Rural Tourism Image and Major Activity Space in Gochang County Shown in Social Data - Focusing on the Keyword 'Gochang-gun Travel' -)

  • 김용진;손광렬;이동채;손용훈
    • 농촌계획
    • /
    • 제27권3호
    • /
    • pp.103-116
    • /
    • 2021
  • In this study, the characteristics of rural tourism image perceived by urban residents were analyzed through text analysis of blog data. In order to examine the images related to rural tourism, blog data written with the keyword "Gochang-gun travel" was used. LDA topic analysis, one of the text mining techniques, was used for the analysis. In the tourism image of Gochang-gun, 9 topics were derived, and 112 major places appeared. This was divided into 3 main activities and 5 object spaces through the review of keywords and the original text of blog data. As a result of the analysis, the traditional main resources of the region, Seonun mountain, Seonun temple, and Gochang-eup fortress, formed topic. On the other hand, world heritage such as dolmen and Ungok wetland did not appear as topic. In particular, the farms operated by the private sector form individual topics, and the theme farm can be seen as an important resource for tourism in Gochang-gun. Also, through the distribution of place keywords, it was possible to understand the characteristics of travel by region and the usage behavior of visitors. In the case of Gochang-gun, there was a phenomenon in which visitors were biased by region. This seems to be the result of Gochang-gun seeking to vitalize local tourism focusing on natural, ecological, and scenic resources. It is necessary to establish a plan for balanced regional development and develop other types of tourism resources. This study is different in that it identified the types and characteristics of rural tourism images in the region perceived by visitors, and the status of tourism at the regional level.

언택트 연구의 지식구조에 대한 탐색적 분석 (A Exploratory Analysis on Knowledge Structure of Untact Research)

  • 김성묵;차현희
    • 문화기술의 융합
    • /
    • 제7권2호
    • /
    • pp.367-375
    • /
    • 2021
  • 본 연구는 텍스트 마이닝을 이용하여 언택트 연구의 지식구조를 파악하고 연구 방향 정립을 위한 함의를 찾고자 하였다. 2019년부터 2020년 10월까지 발표된 연구 문헌 171편의 서지정보를 네트워크 분석과 토픽 모델링 기법을 사용, 분석하였다. 사용, 서비스, 소비, 영향, 기술 키워드 등의 등장 빈도가 높았고, 등장논문의 수는 코로나19, 기술, 사용, 서비스의 순서였다. 중심성과 구조적 공백 분석 결과 서비스, 사용, 소비, 기술, 온라인 등의 키워드를 중심으로 연구가 이루어졌고, 더 연구가 필요함을 확인하였다. 토픽 모델링으로 코로나19와 사회기술변화, 교육콘텐츠 필요성 및 활용, 사용자 편의 기술 및 서비스, 제품 마케팅 및 판매, 기업의 서비스 디자인, 사용과 소비 영향요인 등 6개 토픽을 추출하였고 토픽을 잇는 키워드는 기술, 서비스, 사용, 소비, 필요, 요인 등이었다. 지식구조 분석은 언택트 연구와 정책 제안에 유용한 정보를 제공할 수 있다. 본 연구의 탐색적 성격을 넘어 양적 축적과 질적 다변화가 필요하다.

사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안 (A Proposal of a Keyword Extraction System for Detecting Social Issues)

  • 정다미;김재석;김기남;허종욱;온병원;강미정
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).

인스턴트 메시징에서의 대화 주제 및 주제 전환 탐지 (Topic and Topic Change Detection in Instance Messaging)

  • 최윤정;신욱현;정윤재;맹성현;한경수
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권7호
    • /
    • pp.59-66
    • /
    • 2008
  • 본 논문에서는 인스턴트 메시징(Instant Messaging), 채팅과 같은 텍스트 기반의 대화에서 현재 발화를 기준으로 대화의 주제를 파악하고, 대화 주제 전환 여부를 판단하는 기법에 대해 기술한다. 대화는 다른 종류의 글과 다르게 길이가 매우 짧아 적은 수의 단어를 사용하고, 두 사람 이상이 참여를 하며, 대화의 이력(History)이 현재의 발화에 영향을 미친다. 이러한 특성에 따라 본 논문에서는 사용자 발화 뿐 아니라 대화 상대자의 발화에서 추출한 키워드 기반으로 주제 탐지를 하며, 대화의 이력도 고려하여 대화 주제 탐지의 정확도를 높힌 연구 결과를 기술한다. 대화주제 전환 탐지는 이전 발화와 현재 발화에서 탐지된 주제의 유사성을 계산하여, 유사성이 낮은 경우에 전환 탐지가 이루어졌다고 판단하였다. 본 논문의 실험에서 대화 주제 탐지는 88.20%. 대화 주제 전환 탐지는 87.36%의 정확도를 얻었다.

  • PDF

A Research on Difference Between Consumer Perception of Slow Fashion and Consumption Behavior of Fast Fashion: Application of Topic Modelling with Big Data

  • YANG, Oh-Suk;WOO, Young-Mok;YANG, Yae-Rim
    • 융합경영연구
    • /
    • 제9권1호
    • /
    • pp.1-14
    • /
    • 2021
  • Purpose: The article deals with the proposition that consumers' fashion consumption behavior will still follow the consumption behavior of fast fashion, despite recognizing the importance of slow fashion. Research design, data and methodology: The research model to verify this proposition is topic modelling with big data including unstructured textual data. we combined 5,506 news articles posted on Naver news search platform during the 2003-2019 period about fast fashion and slow fashion, high-frequency words have been derived, and topics have been found using LDA model. Based on these, we examined consumers' perception and consumption behavior on slow fashion through the analysis of Topic Network. Results: (1) Looking at the status of annual article collection, consumers' interest in slow fashion mainly began in 2005 and showed a steady increase up to 2019. (2) Term Frequency analysis showed that the keywords for slow fashion are the lowest, with consumers' consumption patterns continuing around 'brand.' (3) Each topic's weight in articles showed that 'social value' - which includes slow fashion - ranked sixth among the 9 topics, low linkage with other topics. (4) Lastly, 'brand' and 'fashion trend' were key topics, and the topic 'social value' accounted for a low proportion. Conclusion: Slow fashion was not a considerable factor of consumption behavior. Consumption patterns in fashion sector are still dominated by general consumption patterns centered on brands and fast fashion.

Study of Mental Disorder Schizophrenia, based on Big Data

  • Hye-Sun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.279-285
    • /
    • 2023
  • This study provides academic implications by considering trends of domestic research regarding therapy for Mental disorder schizophrenia and psychosocial. For the analysis of this study, text mining with the use of R program and social network analysis method have been used and 65 papers have been collected The result of this study is as follows. First, collected data were visualized through analysis of keywords by using word cloud method. Second, keywords such as intervention, schizophrenia, research, patients, program, effect, society, mind, ability, function were recorded with highest frequency resulted from keyword frequency analysis. Third, LDA (latent Dirichlet allocation) topic modeling result showed that classified into 3 keywords: patient, subjects, intervention of psychosocial, efficacy of interventions. Fourth, the social network analysis results derived connectivity, closeness centrality, betweennes centrality. In conclusion, this study presents significant results as it provided basic rehabilitation data for schizophrenia and psychosocial therapy through new research methods by analyzing with big data method by proposing the results through visualization from seeking research trends of schizophrenia and psychosocial therapy through text mining and social network analysis.