• 제목/요약/키워드: Topic Keywords

검색결과 387건 처리시간 0.023초

한국농수산대학 신입생 자기소개서의 텍스트 마이닝과 연관규칙 분석 (1) (Text Mining and Association Rules Analysis to a Self-Introduction Letter of Freshman at Korea National College of Agricultural and Fisheries (1))

  • 주진수;이소영;김종숙;신용광;박노복
    • 현장농수산연구지
    • /
    • 제22권1호
    • /
    • pp.113-129
    • /
    • 2020
  • 본 연구는 2020년 한농대 입학생의 비정형 텍스트인 자소서에서 의미 있는 정보 혹은 규칙을 추출하기 위하여 고교 재학 중 '학업 및 학습경험'과 '교내 활동'을 기술한 두 개 문항에 대하여 텍스트 마이닝에 의한 토픽 분석과 연관성 분석을 하였다. 모집 전형을 구분하지 않은 텍스트 마이닝 분석 결과에서 '학업 및 학습 경험' 항목과 관련된 주요 키워드는 '공부', '생각', '노력', '문제', '친구' 등의 순으로 많이 나타났으며, '교내 활동' 항목과 관련된 주요 키워드는 '활동', '생각', '친구', '동아리', '학교' 등의 순으로 빈도가 높게 나타났다. 그러나 도시 인재 전형과 농수산 인재 전형 신입생들의 키워드 빈도 순위는 두 항목 모두 전형 특성에 따른 약간의 차이를 나타냈다. 빈도 분석에 결과는 빈도수 상위 50위까지의 키워드를 워드 클라우드로 시각화하여 키워드를 알기 쉽게 표현하였다. 연관 분석은 apriori() 함수를 사용하였으며 적정한 계산을 위하여 support(지지도)와 confidence(신뢰도)의 기준값을 항목별로 설정하였다. 먼저 '학업' 항목에 대한 연관 규칙은 46개를 추출하였으며, 그 가운데 {공부} => {생각}, {성적} => {공부} 및 {과목} => {공부} 등의 규칙에서 높은 연관성을 볼 수 있었다. 이 규칙을 바탕으로 매개체 역할의 키워드를 평가하는 관계 중심성 평가와 노드에 연결된 edge의 수에 따라 중요도를 파악하는 연결 중심성 평가에서는 '생각', '공부', '노력', '시간' 등의 키워드가 중심적인 역할을 하는 정보를 획득하였다. 다음으로 '교내 활동' 항목에서는 45개의 연관 규칙을 생성하여 {활동} => {생각}, {동아리} => {활동} 등의 규칙에서 높은 연관성을 볼 수 있었으며, 관계 중심성 평가와 연결 중심성 평가에서는 '생각', '활동', '학교', '시간', '친구' 등의 키워드가 중심 키워드라는 결과를 얻었다. 다음 연구에서는 자소서의 나머지 두 개의 문항 '배려·나눔·협력·갈등관리' 항목과 한농대 '지원동기와 향후 진로계획' 항목을 분석한다. 분석에는 '키워드의 빈도'에 '문서 빈도의 역수'를 곱하여 주로 다량의 문서에서 핵심어를 추출하는 TF-IDF(Term Frequency-Inverse Document Frequency) 분석을 추가한다.

대학수학교육에서의 챗GPT 활용과 사례 (Use of ChatGPT in college mathematics education)

  • 이상구;박도영;이재윤;임동선;이재화
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.123-138
    • /
    • 2024
  • 본 연구는 S대학 <인공지능을 위한 기초수학[Math4AI]> 강좌의 교수·학습과정에서 맞춤형 챗GPT를 개발하여 활용한 경험을 공유한다. 연구진은 ① 먼저 강좌 맞춤형 챗GPT (https://math4ai.solgitmath.com/)를 개발하였다. 이때 챗GPT가 부정확한 정보를 주지 않도록 수년간의 해당 강좌 주요 데이터(교재, 실습실, 토론 기록, 코드 등)를 우선적으로 학습하는 챗GPT의 기능을 적용하였다. ② 학생들이 교재를 스스로 학습하다 궁금한 부분이 생기면, 맞춤형 챗GPT 인터페이스를 통해 자연어로 수학 용어, 정리, 예제, 열린 문제 번호, 핵심어 등을 질문하여 도움을 얻을 수 있도록 하였다. 그러면 챗GPT는 관련된 주요 문제나 용어, 그리고 이전 학생들의 토론에 기반한 몇 가지 샘플 답안 또는 토론 내용과 함께 사용되었던 코드 샘플을 제공한다. ③ 학생들이 챗GPT를 통해 얻은 내용을 스스로 윤문하여 공유하고, 상호 토론하면서, 교재에서 제시하는 주요 개념과 열린 문제의 대부분을 이해하도록 하였다. ④ 학기 말에는 그간 본인이 얻은 열린 문제들에 대한 학습기록을 모아 PBL (Problem-Based Learning) 보고서로 제출하고, 발표하여 강좌를 수료하도록 하였다. 이러한 방식은 학생들이 학습을 포기하지 않고 한 단계 앞으로 더 나아갈 추진력과 동기를 주며, 궁극적으로 각각의 문제를 스스로 해결하는 자기 주도적 학습을 도울 수 있다. 또한 학생들 각자의 수준에 맞추어 실시간으로 최적화된 조언을 제시하므로 강좌뿐만 아니라 대학수학교육 전반에 대한 학생별 맞춤형 교육(personalized education)을 제공할 수 있다. 즉, 학생들이 담당교수(또는 조교)와 AI 조교의 도움으로 실시간 답변과 효과적인 조언을 받을 수 있게 됨을 의미한다. 이는 양질의 조교 부족에 대한 고민을 추가 비용 없이 획기적으로 해결할 수 있다. 본 연구는 강좌의 교수·학습과정에 교재 맞춤형 챗GPT를 접목한 것으로, 인공지능(AI) 기술을 기타 대학수학 과목들(미적분학, 선형대수학, 이산수학, 공학수학, 기초통계학 등)과 초·중·고 수학교육에 적용할 수 있는 새로운 방법을 제시한다. 특히 AI 기술을 적용하여 이전 수강생들의 학습기록(열린 문제 풀이, 토론 자료, 코드 등)을 참고하며, 각자 실습한 결과를 공유 및 상호 토론하여 문제를 해결하는 방식은, 다양한 전공의 학생들이 내용을 더 효과적으로 이해하고, 본인 전공 관련 문제 해결 능력을 향상시키는 데 획기적인 도움을 줄 것으로 예상된다. 또한 교재 맞춤형 챗GPT와 함께 자기주도적인 학습을 경험토록 하는 교수학습 방법은 평생 교육(lifelong learning, extension school, extension college, extended college) 또는 평생학습의 관점에서 중요하다.

산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로 (A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles)

  • 김원희;권영옥
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.287-316
    • /
    • 2023
  • 최근 전 세계적으로 기업의 환경(Environmental)·사회(Social)·지배구조(Governance)의 비재무적 요소를 고려한 지속가능경영이 필수적으로 요구되면서, 각 기업들은 이에 대응할 수 있는 전략적 방향 수립이 중요해지고 있다. 특히 기업이 속한 산업별로 상이한 ESG 이슈에 대한 이해를 바탕으로 산업과 개별 기업의 특성을 반영한 전략을 개발하고 추진할 수 있어야 할 것이다. 이에 본 연구에서는 금융, 제조, IT 분야별로 나누어 주요 국내 기업들의 ESG 보고서와 관련 뉴스 기사를 이용하여 산업별 ESG 동향과 활동을 비교 분석하였다. 키워드 빈도분석과 토픽 모델링을 활용한 분석 결과, 국내 ESG 선도 기업들의 지속가능경영 활동에서의 산업별 차이를 도출 할 수 있다. 금융 분야에서는 '고객 중심 경영'과 '기후 변화 대응', 제조 분야에서는 '지속가능한 공급망 관리'와 '탄소중립', IT 분야에서는 '기술혁신'과 '디지털 책임'이 강조되었다. ESG 요소별 우선 순위가 높은 활동의 예를 들면, 환경 측면에서는 '에너지 절감과 친환경 활동', 사회 측면에서는 '사회공헌과 상생', 지배구조 측면에서는 '이사회 독립성 강화와 리스크 관리' 등으로 나타났다. 더 나아가 산업별 각 ESG 요소의 핵심 이슈 뿐 아니라 ESG 보고서와 뉴스 기사의 내용 유사성 및 차별점도 확인하였다. 연구의 결과는 산업별 동향을 고려한 ESG 경영 전략 및 정책의 방향성을 제시하고 있으며 이는 산업별 ESG 평가체계 수립에도 도움이 될 것으로 기대한다.

토픽 모델링을 활용한 한국의 창업생태계 트렌드 변화 분석 (Analysis on Dynamics of Korea Startup Ecosystems Based on Topic Modeling)

  • 손희영;이명종;변영조
    • 지식경영연구
    • /
    • 제23권4호
    • /
    • pp.315-338
    • /
    • 2022
  • 1986년, 한국은 국가발전의 주축인 중소기업 창업지원을 위한 법 제도를 마련하였다. 이를 기반으로 지난 30여년간 창업정책의 수립 및 발전을 거듭하여 매년 100만 개가 넘는 신규 창업기업이 설립되는 역동적인 창업생태계를 구축하였다. 국가의 정책 방향과 사회, 경제, 문화 등의 외부환경 영향, 그리고 창업지원의 역사를 주요 이슈별로 분석하여 도출된 핵심문장 또는 키워드는 시대별 지원의 특징과 국가지원의 중심내용 등을 확인하는 데 매우 유용하다. 본 연구는 한국의 창업생태계 트렌드 변화를 분석하기 위해 1991년부터 2020년 12월까지 30년간의 언론기사에서 '창업', '벤처', '스타트업' 키워드가 포함된 118만여 건을 추출하고 네트워크 분석과 토픽 모델링을 활용하였다. 분석결과, 한국의 창업생태계 트렌드는 기업 및 산업육성, 확산 그리고 규제 완화, 활황 등, 정부 중심으로 스타트업 생태계의 변화와 발전이 이루어졌음을 파악할 수 있었으며, 다빈도 키워드 분석결과, 생태계 구성요인 간의 연계 활동을 통하여 기업가적인 생산성이 창출되었다. 생산성 창출의 주요 요인으로 한국은 대기업의 휴대폰 산업 발전과 이와 관련된 콘텐츠 스타트업의 성장, 인터넷과 쇼핑몰 중심의 플랫폼 기업의 발전, 그리고 청년창업과 글로벌 진출, 모바일과 인터넷 인프라 중심의 창업기업육성 노력 등으로 파악할 수 있었다. 본 연구는 30년간의 언론기사를 텍스트마이닝과 토픽 모델링을 활용하여 트렌드를 도출하였다. 이는 선행연구가 기존 정부와 정책의 변경 시기를 기준으로 트렌드 변화를 분석한 것과 달리, 언론기사의 키워드와 토픽 변화를 기준으로 창업생태계의 트렌드 변화를 분석하였다는 점에서 학술적 의의뿐만 아니라, 30년 간의 창업생태계 변화 및 주요이슈를 조명해 봄으로써 향후 창업지원의 방향성을 예측할 수 있는 실무적 시사점을 제공하였다.

텍스트마이닝을 통한 최고경영자 대상 이러닝 콘텐츠 트렌드 분석 (Text Mining-Based Emerging Trend Analysis for e-Learning Contents Targeting for CEO)

  • 김경훈;채명신;이병태
    • 경영정보학연구
    • /
    • 제19권2호
    • /
    • pp.1-19
    • /
    • 2017
  • 본 연구는 텍스트마이닝 기법 중 토픽 분석을 활용하여 관련 업계 국내 1위 S사(社)의 최고경영자 대상 온라인 교육 콘텐츠 강의 중심으로 원문 스크립트를 분석했다. 지난 5년간(2011~2015)년 서비스된 총 4,824개 콘텐츠를 바탕으로 핵심 키워드를 추출한 다음 주제별 22가지 토픽으로 분류한 후 동향 분석을 수행했다. 이를 통해 최근 콘텐츠 비중이 급증하고 있는 토픽 주제를 확인할 수 있었다. 다음으로 토픽 분석을 통해 분류한 토픽 및 카테고리를 바탕으로 회원 평가 요인을 적용해 카테고리 및 각 토픽별 지적 관심도를 체계화 할 수 있었다. 경영·경제 분야에서는 마케팅전략, 인사/조직, 커뮤니케이션 분야 등이 높은 관심도와 만족도를 나타냈다. 인문 분야에서는 철학, 전쟁사, 역사(서양) 라이프스타일에서는 마음건강 분야가 관심도와 만족도 둘 다 높은 것으로 나타났다. 이와 함께 교육용 콘텐츠가 시대 변화에 민감하게 반응할지라도 회원의 관심과 만족도 제고에는 실패할 수 있다는 사실을 확인할 수 있었다. 최근 콘텐츠 비중은 급증했지만 평균 이하의 만족도를 기록한 IT기술 토픽이 대표적 사례라 할 수 있다. 이를 통해 최고경영자 대상 콘텐츠 제작 시 단순히 기술적 측면의 정보전달에서 끝나는 것이 아닌 기술 적용을 통한 가치혁신에 대한 깊이 있는 시사점을 도출하거나 풍부한 영상 자료를 바탕으로 다양한 볼거리를 제공하는 등 양적인 측면과 함께 질적인 측면을 고려해야 한다는 교훈을 얻을 수 있었다. 본 연구는 포털 사이트 혹은 SNS 자료가 아닌 국내 가장 영향력 있는 이러닝 기업 데이터를 토대로 분석을 진행했기에 보다 심도 있고 실용적인 결과를 도출했다. 또한 이러닝 관련 연구 분야에서 지금까지는 드물었지만 기술의 발달로 점점 연구 조사 방법론으로 기대가 높아진 텍스트마이닝 방법에 대하여 그 적용 가능성을 성공적으로 탐색해 보았다. 기존에는 콘텐츠 운영 현황 분석 시 콘텐츠 프로그램명에 입각, 표면적인 방식으로 분류할 수밖에 없는 한계가 존재했다면 텍스트마이닝 방법론을 활용하면 비정형 데이터 콘텐츠 스크립트를 바탕으로 분석하여 내용을 바탕으로 한 보다 심도 있는 콘텐츠 분류 및 주제 분류를 이끌어 낼 수 있다. 이를 바탕으로 연도에 따른 주제별 콘텐츠 서비스 현황을 도식화한다면 현재 부족한 분야와 필요한 분야에 대한 보다 심도 있는 고찰이 가능하다. 본 연구는 다양한 텍스트마이닝 기법 중에서 이러닝의 상황에서 효과적으로 연구하기 위한 새로운 방법론을 제시했으며 향후 최고경영자 교육 관련 분야별 지적 관심도에 대한 분석에 도움이 될 것으로 기대된다.

폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근 (A Folksonomy Ranking Framework: A Semantic Graph-based Approach)

  • 박현정;노상규
    • Asia pacific journal of information systems
    • /
    • 제21권2호
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석 (Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques)

  • 정지송;김호동
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.33-54
    • /
    • 2021
  • 최근 4차 산업혁명, 코로나로 인한 뉴노멀 시대의 도래 등을 계기로 인공지능, 빅데이터 연구와 같은 언택트 관련 기술의 중요성이 더욱 급상하고 있다. 각 종 연구 분야에서는 이러한 연구 트렌드를 따라가기 위한 융합적 연구가 본격적으로 시행되고 있으나 원자력 분야의 경우 자연어 처리, 텍스트마이닝 분석 등 인공지능 및 빅데이터 관련 기술을 적용한 연구가 많이 수행되지 않았다. 이에 원자력 연구 분야에 데이터 사이언스 분석기술의 적용 가능성을 확인해보고자 본 연구를 수행하였다. 원자로 연료로 사용된 뒤 배출되는 사용후핵연료 인식 동향 파악에 대한 연구는 원자력 산업 정책에 대한 방향을 결정하고 산업정책 변화를 사전에 대응할 수 있다는 측면에서 매우 중요하다. 사용후핵연료 처리기술은 크게 습식 재처리 방식과 건식 재처리 방식으로 나뉘는데, 이 중 환경 친화적이고 핵비확산성 및 경제성이 높은 건식재처리 기술인 '파이로프로세싱'과 그 연계 원자로 '소듐냉각고속로'의 연구개발에 대한 재평가가 현재 지속적으로 검토되고 있다. 따라서 위와 같은 이유로, 본 연구에서는 사용후핵연료 처리기술인 파이로프로세싱에 대한 언론 동향 분석을 진행하였다. 사용후핵연료 처리기술인 '파이로프로세싱' 키워드를 포함하는 네이버 웹 뉴스 기사 전문의 텍스트데이터를 수집하여 기간에 따라 인식변화를 분석하였다. 2016년 발생한 경주 지진, 2017년 새 정부의 에너지 전환정책 시행된 2010년대 중반 시기를 기준으로 전, 후의 동향 분석이 시행되었고, 빈도분석을 바탕으로 한 워드 클라우드 도출, TF-IDF(Term Frequency - Inverse Document Frequency) 도출, 연결정도 중심성 산출 등의 분석방법을 통해 텍스트데이터에 대한 세부적이고 다층적인 분석을 수행하였다. 연구 결과, 2010년대 이전에는 사용후핵연료 처리기술에 대한 사회 언론의 인식이 외교적이고 긍정적이었음을 알 수 있었다. 그러나 시간이 흐름에 따라 '안전(safety)', '재검토(reexamination)', '대책(countermeasure)', '처분(disposal)', '해체(disassemble)' 등의 키워드 출현빈도가 급증하며 사용후핵연료 처리기술 연구에 대한 지속 여부가 사회적으로 진지하게 고려되고 있음을 알 수 있었다. 정치 외교적 기술로 인식되던 사용후핵연료 처리기술이 국내 정책의 변화로 연구 지속 가능성이 모호해짐에 따라 언론 인식도 점차 변화했다는 것을 확인하였다. 이러한 연구 결과를 통해 원자력 분야에서의 사회과학 연구의 지속은 필수불가결함을 알 수 있었고 이에 대한 중요성이 부각되었다. 또한, 현 정부의 원전 감축과 같은 에너지 정책의 영향으로, 사용후핵연료 처리기술 연구개발에 대한 재평가가 시행되는 이 시점에서 해당 분야의 주요 키워드 분석은 향후 연구 방향 설정에 기여할 수 있을 것이라는 측면에서 실무적 의의를 갖는다. 더 나아가 원자력 공학 분야에 사회과학 분야를 폭넓게 적용할 필요가 있으며, 국가 정책적 변화를 고려해야 원자력 산업이 지속 가능할 것으로 사료된다.