• Title/Summary/Keyword: Topic Keywords

Search Result 436, Processing Time 0.021 seconds

Keyword Reorganization Techniques for Improving the Identifiability of Topics (토픽 식별성 향상을 위한 키워드 재구성 기법)

  • Yun, Yeoil;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.18 no.4
    • /
    • pp.135-149
    • /
    • 2019
  • Recently, there are many researches for extracting meaningful information from large amount of text data. Among various applications to extract information from text, topic modeling which express latent topics as a group of keywords is mainly used. Topic modeling presents several topic keywords by term/topic weight and the quality of those keywords are usually evaluated through coherence which implies the similarity of those keywords. However, the topic quality evaluation method based only on the similarity of keywords has its limitations because it is difficult to describe the content of a topic accurately enough with just a set of similar words. In this research, therefore, we propose topic keywords reorganizing method to improve the identifiability of topics. To reorganize topic keywords, each document first needs to be labeled with one representative topic which can be extracted from traditional topic modeling. After that, classification rules for classifying each document into a corresponding label are generated, and new topic keywords are extracted based on the classification rules. To evaluated the performance our method, we performed an experiment on 1,000 news articles. From the experiment, we confirmed that the keywords extracted from our proposed method have better identifiability than traditional topic keywords.

Topic Modeling with Deep Learning-based Sentiment Filters (감정 딥러닝 필터를 활용한 토픽 모델링 방법론)

  • Choi, Byeong-Seol;Kim, Namgyu
    • The Journal of Information Systems
    • /
    • v.28 no.4
    • /
    • pp.271-291
    • /
    • 2019
  • Purpose The purpose of this study is to propose a methodology to derive positive keywords and negative keywords through deep learning to classify reviews into positive reviews and negative ones, and then refine the results of topic modeling using these keywords. Design/methodology/approach In this study, we extracted topic keywords by performing LDA-based topic modeling. At the same time, we performed attention-based deep learning to identify positive and negative keywords. Finally, we refined the topic keywords using these keywords as filters. Findings We collected and analyzed about 6,000 English reviews of Gyeongbokgung, a representative tourist attraction in Korea, from Tripadvisor, a representative travel site. Experimental results show that the proposed methodology properly identifies positive and negative keywords describing major topics.

A Method of Calculating Topic Keywords for Topic Labeling (토픽 레이블링을 위한 토픽 키워드 산출 방법)

  • Kim, Eunhoe;Suh, Yuhwa
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.3
    • /
    • pp.25-36
    • /
    • 2020
  • Topics calculated using LDA topic modeling have to be labeled separately. When labeling a topic, we look at the words that represent the topic, and label the topic. Therefore, it is important to first make a good set of words that represent the topic. This paper proposes a method of calculating a set of words representing a topic using TextRank, which extracts the keywords of a document. The proposed method uses Relevance to select words related to the topic with discrimination. It extracts topic keywords using the TextRank algorithm and connects keywords with a high frequency of simultaneous occurrence to express the topic with a higher coverage.

Semantic Visualization of Dynamic Topic Modeling (다이내믹 토픽 모델링의 의미적 시각화 방법론)

  • Yeon, Jinwook;Boo, Hyunkyung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.131-154
    • /
    • 2022
  • Recently, researches on unstructured data analysis have been actively conducted with the development of information and communication technology. In particular, topic modeling is a representative technique for discovering core topics from massive text data. In the early stages of topic modeling, most studies focused only on topic discovery. As the topic modeling field matured, studies on the change of the topic according to the change of time began to be carried out. Accordingly, interest in dynamic topic modeling that handle changes in keywords constituting the topic is also increasing. Dynamic topic modeling identifies major topics from the data of the initial period and manages the change and flow of topics in a way that utilizes topic information of the previous period to derive further topics in subsequent periods. However, it is very difficult to understand and interpret the results of dynamic topic modeling. The results of traditional dynamic topic modeling simply reveal changes in keywords and their rankings. However, this information is insufficient to represent how the meaning of the topic has changed. Therefore, in this study, we propose a method to visualize topics by period by reflecting the meaning of keywords in each topic. In addition, we propose a method that can intuitively interpret changes in topics and relationships between or among topics. The detailed method of visualizing topics by period is as follows. In the first step, dynamic topic modeling is implemented to derive the top keywords of each period and their weight from text data. In the second step, we derive vectors of top keywords of each topic from the pre-trained word embedding model. Then, we perform dimension reduction for the extracted vectors. Then, we formulate a semantic vector of each topic by calculating weight sum of keywords in each vector using topic weight of each keyword. In the third step, we visualize the semantic vector of each topic using matplotlib, and analyze the relationship between or among the topics based on the visualized result. The change of topic can be interpreted in the following manners. From the result of dynamic topic modeling, we identify rising top 5 keywords and descending top 5 keywords for each period to show the change of the topic. Existing many topic visualization studies usually visualize keywords of each topic, but our approach proposed in this study differs from previous studies in that it attempts to visualize each topic itself. To evaluate the practical applicability of the proposed methodology, we performed an experiment on 1,847 abstracts of artificial intelligence-related papers. The experiment was performed by dividing abstracts of artificial intelligence-related papers into three periods (2016-2017, 2018-2019, 2020-2021). We selected seven topics based on the consistency score, and utilized the pre-trained word embedding model of Word2vec trained with 'Wikipedia', an Internet encyclopedia. Based on the proposed methodology, we generated a semantic vector for each topic. Through this, by reflecting the meaning of keywords, we visualized and interpreted the themes by period. Through these experiments, we confirmed that the rising and descending of the topic weight of a keyword can be usefully used to interpret the semantic change of the corresponding topic and to grasp the relationship among topics. In this study, to overcome the limitations of dynamic topic modeling results, we used word embedding and dimension reduction techniques to visualize topics by era. The results of this study are meaningful in that they broadened the scope of topic understanding through the visualization of dynamic topic modeling results. In addition, the academic contribution can be acknowledged in that it laid the foundation for follow-up studies using various word embeddings and dimensionality reduction techniques to improve the performance of the proposed methodology.

Keywords and Topic Analysis of Social Issues on Twitter Based on Text Mining and Topic Modeling (텍스트 마이닝과 토픽 모델링을 기반으로 한 트위터에 나타난 사회적 이슈의 키워드 및 주제 분석)

  • Kwak, Soo Jeong;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • In this study, we investigate important keywords and their relationships among the keywords for social issues, and analyze topics to find subjects of the social issues. In particular, we collected twitter data with the keyword 'metoo' which has attracted much attention in these days, and perform keyword analysis and topic modeling. First, we preprocess the twitter data, identified important keywords, and analyzed the relatedness of the keywords. After then, topic modeling is performed to find subjects related to 'metoo'. Our experimental results showed that relatedness of keywords and subjects on social issues in twitter are well identified based on keyword analysis and topic modeling.

An Analysis of Supportive Design Trends Using Social Network Analysis (소셜네트워크분석을 통한 Supportive Design 트렌드 연구)

  • Lee, Yu Jeong;Kim, Baek Jun;Lee, Kweon Hyoung;Lee, Jong Hwa
    • The Journal of Information Systems
    • /
    • v.34 no.1
    • /
    • pp.171-191
    • /
    • 2025
  • Purpose This study aims to systematically analyze research trends in Supportive Design using text mining techniques and Social Network Analysis (SNA). The goal is to identify the main topics and core keywords within Supportive Design research and to visualize the relationships between studies to better understand the latest research trends. Design/methodology/approach For this study, 214 Supportive Design-related papers were initially collected from major academic databases, including ScienceDirect, PubMed, and EBSCO. Using LDA topic modeling, six main research topics were identified. Based on the extracted keywords, an additional 3,497 papers were collected, and text mining techniques were applied to extract titles and keywords. Subsequently, LDA topic modeling and Social Network Analysis (SNA) were conducted to analyze the core keywords for each topic, examine the relationships between studies, and visualize the resulting network. Findings The analysis revealed that Supportive Design research can be classified into six main topics: Elderly and Universal Healthcare Environments, Healing Environments and Evidence-Based Hospital Design, Hospital Space Planning and Public Healthcare, Patient-Centered Healthcare Environments and Decision-Making, Mental Health and Healing Models, and Medical Technology and Well-being. Key keywords were extracted for each topic, and the Social Network Analysis (SNA) identified strong interconnections among studies, with keywords such as "healing", "care", "design", and "health" showing high centrality.

Trend Analysis of Research Topics in Ecological Research

  • Suntae Kim
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • This study analyzed research trends in the field of ecological research. Data were collected based on a keyword search of the SCI, SSCI, and A&HCI databases from January 2002 to September 2022. The seven keywords, including biodiversity, ecology, ecotourism, species, climate change, ecosystem, restoration, wildlife, were recommended by ecological research experts. Word clouds were created for each of the searched keywords, and topic map analysis was performed. Topic map analysis using biodiversity, climate change, ecology, ecosystem, and restoration each generated 10 topics; topic maps analysis using the ecotourism keyword generated 5 topics; and topic map analysis using the wildlife keyword generated 4 topics. Each topic contained six keywords.

The study on the design of Korean Medical Article Retrieval System Supporting Semantic Navigation based on Ontology (의미 네비게이션을 지원하는 온톨로지 기반 한의학 논문 검색 시스템 설계 연구)

  • Ko, You-Mi;Eom, Dong-Myung
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.2
    • /
    • pp.35-52
    • /
    • 2005
  • This study is to design a Semantic Navigation Retrieval System for Oriental Medicine Articles based on a XTM so that people can search and use them more effectively than before. Keywords extracted from articles are categorized 4 topics : herbs, prescription, disease, and action. Keywords analysis Ontology is modeled based on 4 topics and their relations, and then represented Topic maps. Next, Article analysis Ontology is consist of title, author, keywords, abstracts and organization Topics from metadata. Keywords and Article analysis Ontology were integrated through Keywords Topic. Korean Medical Article Retrieval System is optimistic in terms on search results supporting semantic navigation in the information service aspects and easier accessibility because all related information are semantically connected with each different DBs.

  • PDF

Research trends in the Korean Journal of Women Health Nursing from 2011 to 2021: a quantitative content analysis

  • Ju-Hee Nho;Sookkyoung Park
    • Women's Health Nursing
    • /
    • v.29 no.2
    • /
    • pp.128-136
    • /
    • 2023
  • Purpose: Topic modeling is a text mining technique that extracts concepts from textual data and uncovers semantic structures and potential knowledge frameworks within context. This study aimed to identify major keywords and network structures for each major topic to discern research trends in women's health nursing published in the Korean Journal of Women Health Nursing (KJWHN) using text network analysis and topic modeling. Methods: The study targeted papers with English abstracts among 373 articles published in KJWHN from January 2011 to December 2021. Text network analysis and topic modeling were employed, and the analysis consisted of five steps: (1) data collection, (2) word extraction and refinement, (3) extraction of keywords and creation of networks, (4) network centrality analysis and key topic selection, and (5) topic modeling. Results: Six major keywords, each corresponding to a topic, were extracted through topic modeling analysis: "gynecologic neoplasms," "menopausal health," "health behavior," "infertility," "women's health in transition," and "nursing education for women." Conclusion: The latent topics from the target studies primarily focused on the health of women across all age groups. Research related to women's health is evolving with changing times and warrants further progress in the future. Future research on women's health nursing should explore various topics that reflect changes in social trends, and research methods should be diversified accordingly.

Trends in Infertility Research in South Korea: Text Network Analysis and Topic Modeling Analysis

  • Gie Ok Noh
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.4
    • /
    • pp.190-196
    • /
    • 2024
  • This study was conducted to identify the research trends and key concepts of fertility-related research published in Korea. For the analysis of this study, target papers published from 2014 to 2023 were collected by entering the keywords of 'infertility' or 'Sterility'. 155 papers were analyzed. The co-occurrence network of key words was developed and analyzed, and the research trends were examined through topic modeling of the LSD, and visualized word cloud and sociogram were used. The most common key words across the 155 research studies were infertility, infertile women, assisted reproductive technology, women, and depression. Highly connected keywords were the same as the top 5 most frequent keywords, and highly mediated keywords were fertility, infertile women, assisted reproductive technology, bioethics, and low birthrate. The four topics analyzed were identified as 'infertile women's experiences and care,' 'psychological problems of infertile women,' 'Korean medicine approaches to infertility,' and 'low fertility and fertility procedures'. Based on the results of this study has identified themes and trends in infertility research over the past decade and suggests that future research should focus on intervention studies and policy development for psychological issues related to infertility.