• Title/Summary/Keyword: Topic Clustering.

Search Result 104, Processing Time 0.025 seconds

Performance Comparison of Clustering Techniques for Spatio-Temporal Data (시공간 데이터를 위한 클러스터링 기법 성능 비교)

  • Kang Nayoung;Kang Juyoung;Yong Hwan-Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.15-37
    • /
    • 2004
  • With the growth in the size of datasets, data mining has recently become an important research topic. Especially, interests about spatio-temporal data mining has been increased which is a method for analyzing massive spatio-temporal data collected from a wide variety of applications like GPS data, trajectory data of surveillance system and earth geographic data. In the former approaches, conventional clustering algorithms are applied as spatio-temporal data mining techniques without any modification. In this paper, we focused to SOM that is the most common clustering algorithm applied to clustering analysis in data mining wet and develop the spatio-temporal data mining module based on it. In addition, we analyzed the clustering results of developed SOM module and compare them with those of K-means and Agglomerative Hierarchical algorithm in the aspects of homogeneity, separation, separation, silhouette width and accuracy. We also developed specialized visualization module fur more accurate interpretation of mining result.

  • PDF

Enhancing Document Clustering using Important Term of Cluster and Wikipedia (군집의 중요 용어와 위키피디아를 이용한 문서군집 향상)

  • Park, Sun;Lee, Yeon-Woo;Jeong, Min-A;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.45-52
    • /
    • 2012
  • This paper proposes a new enhancing document clustering method using the important terms of cluster and the wikipedia. The proposed method can well represent the concept of cluster topics by means of selecting the important terms in cluster by the semantic features of NMF. It can solve the problem of "bags of words" to be not considered the meaningful relationships between documents and clusters, which expands the important terms of cluster by using of the synonyms of wikipedia. Also, it can improve the quality of document clustering which uses the expanded cluster important terms to refine the initial cluster by re-clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

Language Model Adaptation Based on Topic Probability of Latent Dirichlet Allocation

  • Jeon, Hyung-Bae;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.487-493
    • /
    • 2016
  • Two new methods are proposed for an unsupervised adaptation of a language model (LM) with a single sentence for automatic transcription tasks. At the training phase, training documents are clustered by a method known as Latent Dirichlet allocation (LDA), and then a domain-specific LM is trained for each cluster. At the test phase, an adapted LM is presented as a linear mixture of the now trained domain-specific LMs. Unlike previous adaptation methods, the proposed methods fully utilize a trained LDA model for the estimation of weight values, which are then to be assigned to the now trained domain-specific LMs; therefore, the clustering and weight-estimation algorithms of the trained LDA model are reliable. For the continuous speech recognition benchmark tests, the proposed methods outperform other unsupervised LM adaptation methods based on latent semantic analysis, non-negative matrix factorization, and LDA with n-gram counting.

Enhancing Document Clustering Method using Synonym of Cluster Topic and Similarity (군집 주제의 유의어와 유사도를 이용한 문서군집 향상 방법)

  • Park, Sun;Kim, Chul-Won
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1538-1541
    • /
    • 2011
  • 본 논문은 군집 주제의 유의어와 유사도를 이용하여 문서군집의 성능을 향상시키는 방법을 제안한다. 제안된 방법은 비음수행렬분해의 의미특징을 이용하여 군집 주제(topic)의 용어들을 선택함으로서 문서 군집 집합의 내부구조를 잘 표현할 수 있으며, 군집 주제의 용어들에 워드넷의 유의어를 사용하여서 확장함으로써 문서를 용어집합(bag-of-words)으로 표현하는 문제를 해결할 수 있다. 또한 확장된 군집 주제의 용어와 문서집합에 코사인 유사도를 이용하여서 군집의 주제에 적합한 문서를 잘 군집하여서 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

Biomedical Ontologies and Text Mining for Biomedicine and Healthcare: A Survey

  • Yoo, Ill-Hoi;Song, Min
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.109-136
    • /
    • 2008
  • In this survey paper, we discuss biomedical ontologies and major text mining techniques applied to biomedicine and healthcare. Biomedical ontologies such as UMLS are currently being adopted in text mining approaches because they provide domain knowledge for text mining approaches. In addition, biomedical ontologies enable us to resolve many linguistic problems when text mining approaches handle biomedical literature. As the first example of text mining, document clustering is surveyed. Because a document set is normally multiple topic, text mining approaches use document clustering as a preprocessing step to group similar documents. Additionally, document clustering is able to inform the biomedical literature searches required for the practice of evidence-based medicine. We introduce Swanson's UnDiscovered Public Knowledge (UDPK) model to generate biomedical hypotheses from biomedical literature such as MEDLINE by discovering novel connections among logically-related biomedical concepts. Another important area of text mining is document classification. Document classification is a valuable tool for biomedical tasks that involve large amounts of text. We survey well-known classification techniques in biomedicine. As the last example of text mining in biomedicine and healthcare, we survey information extraction. Information extraction is the process of scanning text for information relevant to some interest, including extracting entities, relations, and events. We also address techniques and issues of evaluating text mining applications in biomedicine and healthcare.

Topic based Web Document Clustering using Named Entities (개체명을 이용한 주제기반 웹 문서 클러스터링)

  • Sung, Ki-Youn;Yun, Bo-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.29-36
    • /
    • 2010
  • Past clustering researches are focused on extraction of keyword for word similarity grouping. However, too many candidates to compare and compute bring high complexity, low speed and low accuracy. To overcome these weaknesses, this paper proposed a topical web document clustering model using not only keyword but also named entities such as person name, organization, location, and so on. By several experiments, we prove effects of our model compared with traditional model based on only keyword and analyze how different effects show according to characteristics of document collection.

Optimizing Information Retrieval in Dark Web Academic Literature: A Study Using KeyBERT for Keyword Extraction and Clustering

  • Yosua Setyawan Soekamto;Leonard Christopher Limanjaya;Yoshua Kaleb Purwanto;Bongjun Choi;Seung-Keun Song;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.203-208
    • /
    • 2024
  • The exponential increase in publications and the interconnected nature of sub-domains make traditional methods of information extraction and organization inadequate. This inefficiency can impede scientific progress and innovation. To address these challenges, this research leverages the ability of Bidirectional Encoder Representations from Transformers for keyword extraction (KeyBERT) and integrates with K-Means clustering to organize topics from large datasets effectively. Analyzing a dataset of 47,627 articles from SCOPUS in the domains of Reinforcement Learning and Computer Vision. An ablation study demonstrates the generalizability of the approach across these fields, with the optimal number of clusters determined to be three using the Elbow Method. The results demonstrate that KeyBERT is effective in extracting and organizing topics within these domains, with a particular focus on applications such as medical imaging, autonomous driving, and real-time detection systems. This methodology offers a scalable solution for organizing vast academic datasets, enabling researchers to extract meaningful insights efficiently and apply this approach to other domains.

Lifetime-based Clustering Communication Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 잔여 수명 기반 클러스터링 통신 프로토콜)

  • Jang, Beakcheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2370-2375
    • /
    • 2014
  • Wireless sensor networks (WSNs) have a big potential for distributed sensing for large geographical area. The improvement of the lifetime of WSNs is the important research topic because it is considered to be difficult to change batteries of sensor nodes. Clustering communication protocols are energy-efficient because each sensor node can send its packet to the cluster head near from itself rather than the sink far from itself. In this paper, we present an energy-efficient clustering communication protocol, which chooses cluster heads based on the expected residual lifetime of each sensor node. Simulation results show that our proposed scheme increases average lifetimes of sensor nodes as much as 20% to 30% in terms of the traffic quantity and as much as 30% to 40% in terms of the scalability compared to the existing clustering communication protocol, LEACH.

An Analysis of the Research Trends for Urban Study using Topic Modeling (토픽모델링을 이용한 도시 분야 연구동향 분석)

  • Jang, Sun-Young;Jung, Seunghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.661-670
    • /
    • 2021
  • Research trends can be usefully used to determine the importance of research topics by period, identify insufficient research fields, and discover new fields. In this study, research trends of urban spaces, where various problems are occurring due to population concentration and urbanization, were analyzed by topic modeling. The analysis target was the abstracts of papers listed in the Korea Citation Index (KCI) published between 2002 and 2019. Topic modeling is an algorithm-based text mining technique that can discover a certain pattern in the entire content, and it is easy to cluster. In this study, the frequency of keywords, trends by year, topic derivation, cluster by topic, and trend by topic type were analyzed. Research in urban regeneration is increasing continuously, and it was analyzed as a field where detailed topics could be expanded in the future. Furthermore, urban regeneration is now becoming a regular research field. On the other hand, topics related to development/growth and energy/environment have entered a stagnation period. This study is meaningful because the correlation and trends between keywords were analyzed using topic modeling targeting all domestic urban studies.

The Role of stock market management and social media - Analyzing the types of individual investor and topic - (주식시장관리제도와 소셜 미디어의 역할 - 개인 투자자 집단 유형과 토픽 분석 -)

  • Kim, Jung-Su;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.34 no.5
    • /
    • pp.23-47
    • /
    • 2015
  • In the Korea stock market, individual investors have perceived stock as short arbitrage investment, not long-term investment strategy. In order to reinforce stock market transparency and soundness, it is important to enforce the measures for stock market management. Especially, stock market event caused by financial policy can be given individual investors negative information regarding a stock trading. Thus, it is a need for investigating whether comprehensive review of listing eligibility is influenced on individual investors' responses and stock behaviors in respect of effectiveness. The purpose of this study to examine the relations between such stock market management and transitional aspect of individual investors' trading types and response on the based of pre- and post-event occurrence. Using an dataset of user's text messages on 9 firms posted on the firm-based social media (i.e., Naver, Daum, Paxnet) over the period 2009 to 2014. And we performed text-clustering and topic modeling according to keywords for classifying into investors group and non-investors groups and two types of investors were categorized depending on main topic transition by event windows in Comprehensive review of listing eligibility. The results indicated that a variety of stockholders existed in the stock. And the ratio of non-investors group was on the decrease, on the other hand, the proportion of investors group veer onto the side of pre-pattern after comprehensive review of listing eligibility. A distinctive feature of our study is to explain the influence of stock market management on response changes of individual investors as well as to categorize in accordance with time progression. Implications an suggestions for future research were also discussed.

  • PDF