• Title/Summary/Keyword: Top-K Frequent Query Processing

Search Result 1, Processing Time 0.015 seconds

Finding Frequent Route of Taxi Trip Events Based on MapReduce and MongoDB (택시 데이터에 대한 효율적인 Top-K 빈도 검색)

  • Putri, Fadhilah Kurnia;An, Seonga;Purnaningtyas, Magdalena Trie;Jeong, Han-You;Kwon, Joonho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.347-356
    • /
    • 2015
  • Due to the rapid development of IoT(Internet of Things) technology, traditional taxis are connected through dispatchers and location systems. Typically, modern taxis have embedded with GPS(Global Positioning System), which aims for obtaining the route information. By analyzing the frequency of taxi trip events, we can find the frequent route for a given query time. However, a scalability problem would occur when we convert the raw location data of taxi trip events into the analyzed frequency information due to the volume of location data. For this problem, we propose a NoSQL based top-K query system for taxi trip events. First, we analyze raw taxi trip events and extract frequencies of all routes. Then, we store the frequency information into hash-based index structure of MongoDB which is a document-oriented NoSQL database. Efficient top-K query processing for frequent route is done with the top of the MongoDB. We validate the efficiency of our algorithms by using real taxi trip events of New York City.