• Title/Summary/Keyword: Tooth-colored restorative materials

Search Result 15, Processing Time 0.024 seconds

CERAMIC INLAY RESTORATIONS OF POSTERIOR TEETH

  • Jin, Myung-Uk;Park, Jeong-Won;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2001.05a
    • /
    • pp.235-237
    • /
    • 2001
  • ;Dentistry has benefited from tremendous advances in technology with the introduction of new techniques and materials, and patients are aware that esthetic approaches in dentistry can change one's appearance. Increasingly. tooth-colored restorative materials have been used for restoration of posterior teeth. Tooth-colored restoration for posterior teeth can be divided into three categories: 1) the direct techniques that can be made in a single appointment and are an intraoral procedure utilizing composites: 2) the semidirect techniques that require both an intraoral and an extraoral procedure and are luted chairside utilizing composites: and 3) the indirect techniques that require several appointments and the expertise of a dental technician working with either composites or ceramics. But, resin restoration has inherent drawbacks of microleakage. polymerization shrinkage, thermal cycling problems. and wear in stress-bearing areas. On the other hand, Ceramic restorations have many advantages over resin restorations. Ceramic inlays are reported to have less leakage than resin restoration and to fit better. although marginal fidelity depends on technique and is laboratory dependent. Adhesion of luting resin is more reliable and durable to etched ceramic material than to treated resin composite. In view of color matching, periodontal health. resistance to abrasion, ceramic restoration is superior to resin restorationl. Materials which have been used for the fabrication of ceramic restorations are various. Conventional powder slurry ceramics are also available. Castable ceramics are produced by centrifugal casting of heat-treated glass ceramics. and machinable ceramics are feldspathic porcelains or cast glass ceramics which are milled using a CAD/CAM apparatus to produce inlays (for example, Cered. They may also be copy milled using the Celay apparatus. Pressable ceramics are produced from feldspathic porcelain which is supplied in ingot form and heated and moulded under pressure to produce a restoration. Infiltrated ceramics are another class of material which are available for use as ceramic inlays. An example is $In-Ceram^{\circledR}$(Vident. California, USA) which consists of a porous aluminum oxide or spinell core infiltrated with glass and subsequently veneered with feldspathic porcelain. In the 1980s. the development of compatible refractory materials made fabrication easier. and the development of adhesive resin cements greatly improved clinical success rates. This case report presents esthetic ceramic inlays for posterior teeth.teeth.

  • PDF

AN ACCELERATED TEST FOR COLOR STABILITY AND OPACITY CHANGE OF LIGHT CURING COMPOSITE RESINS (광중합 복합레진의 색안정성 및 투명도 변화에 관한 가속시험)

  • Hwang, Inn-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.215-226
    • /
    • 1993
  • Color stability of tooth colored restorative resins is an important factor, particularly in anterior teeth restoration. The purpose of this study was to evaluate the color stability and opacity change of several light curing composite resins. Specimens of eight composite resins(Prisma AP. H., Brilliant Enamel, Charisma, Durafil, Helio Progress, Herculite XR, P-50 and Silux Plus) were divided into two groups : In Group 1, the specimens were polymerized by visible light curing unit for 60 seconds on both sides and in Group 2, the post-cured specimens were heat tempered by light/heat curing unit for 45 units(about 18 min.). All specimens were stored in distilled water at $60^{\circ}C$ for 30 days. The color characteristics($L^*,a^*,b^*$) and opacity of the specimens before and after immersion were measured by spectrocolorimetry and the total color difference(${\Delta}E^*$) and opacity change (${\Delta}Y%$) were computed. The results obtained were as follows : 1. SP and APH in both groups, DF, HP and HXR in Group 1 showed ${\Delta}E^*$-value above 2.0. 2. DF, HP, SP and HXR in Group 1 showed higher ${\Delta}E^*$-value than in Group 2, but the others had no significant difference. 3. The opacity of CH and HXR in Group 1, and of CH and BE in Group 2 decreased after immersion, while that of the others increased. 4. Opacity change of BE, P50 and HXR was significantly different between Group 1 and 2. These results suggest that color change in the post-cure heat tempered specimens by light/heat curing unit was smaller than that of the specimens polymerized by visible light curing unit. No clinically detectable opacity changes were noted for any materials in either goup.

  • PDF

A STUDY ON THE TENSILE BOND STRENGTH TO TOOTH STRUCTURE OF TOOTH COLORED MATERIALS ACCORDING TO FILLING METHODS AND LIGHT CURING UNITS (심미수복재의 수복방법과 광조사기기에 따른 치질과의 인장결합강도에 관한 연구)

  • Hwang, Ho-Keel;Kim, Young-Kwan;Oh, Haeng-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.652-663
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile bond strength to tooth structure of composite resin and glass ionomer cement according to filling methods and light curing units. In this study, two class V cavities were prepared on the buccal surface of each tooth of 140 extracted human molars, and they were randomly assigned into 3 experimental groups with 40 teeth and control group with 20 teeth. And then, each experimental groups subdivided into 2 groups(A,B) according to light curing units. The cavities of each group were filled with the CLEARFIL FII self curing resin(Control Group), Z-100 light curing resin(Group 1), Vitremer$^{TM}$ light curing glass ionomer cement(Group 2) and Z-100 light curing resin over the Vitrebond$^{TM}$ liner(Group 3). And subdivided A Group used Argon Laser(SPECTRUM$^{TM}$, U.S.A.), B Group used XL 1,000 curing light (3M, U.S.A.). The specimens underwent temperature changed from $5^{\circ}C$ to $55^{\circ}C$ five hundred times. After thermocycling, specimens were stored in 100% relative humidity at $37^{\circ}C$ for 24 hours. And then, the tensile bond strength of specimens were calculated with Universal Testing Machine(AGS-100A, Japan). The results were as follows : 1. Among the experimental groups, the group 2-B showed the highest tensile bond strength ($18.89{\pm}7.80$) and the group 1-A showed the lowest tensile bond strength ($11.68{\pm}2.28$). There was significant difference between group 2-B and group 1-A(p<0.01). 2. Between the light curing units, the XL 1,000 unit showed higher tensile bond strength ($16.63{\pm}3.20$) than that of the Argon Laser unit ($13.73{\pm}2.30$). There was significant difference between XL 1,000 and Argon Laser(p<0.01). 3. About filling methods and materials, the group 2 showed the highest tensile bond strength ($17.56{\pm}1.89$) and the group 1 showed the lowest tensile bond strength($13.03{\pm}1.90$). There was significant difference between group 2 and group 1,3(p<0.01). In conclusion, the results showed that the glass-ionomer cement that cured by XL 1,000 light curing unit demonstrated significantly higher tensile bond strength than other curing unit and filling methods.

  • PDF

RADIOPACITY COMPARISON OF TOOTH COLORED RESTORATIVE MATERIALS WITH DIGITAL RADIOGRAPHY (디지털 방사선사진술을 이용한 치아색 수복물의 방사선불투과도 비교)

  • Kim, Hyo-Jung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.499-508
    • /
    • 2000
  • The purposes of this study were to evaluate the validity of 2 kinds of digital radiography techniques in evaluating the radiopacity comparison of restorative materials and to determine the relative radiopacities of several kinds of compomer and flow able resin using these techniques. After taking radiographs of an aluminum step wedge, con-elation of optical density calibration curves were evaluated between conventional radiography with transmission densitometer and CD-Dent digital radiography (storage phosphor system) and between conventional one and RVG$^{(R)}$ digital radiography (CCD system). Compomers such as Dyract$^{(R)}$ AP, Compoglass$^{(R)}$, and Dyract flow$^{(R)}$, and flowable resins such as Ultraseal-XT$^{(R)}$ plus$^{TM}$, Revolution$^{TM}$, Aeliteflo$^{TM}$ and Tetric-flow$^{(R)}$ were used. Five specimens of 5mm in diameter and 2 mm thick were fabricated with each material. Radiopacities of the materials were measured using the above radiographic techniques and compared. The results were as follows: 1. When the optical density calibration curves were compared, conventional radiography and both CD-Dent and RVG$^{(R)}$ digital radiographies showed very high inverse correlations (${\gamma}$=-0.95, ${\gamma}$=-0.98 ; p<0.05). 2. All the tested restorative materials showed levels of radiopacity the same as or greater than that of dentin (p<0.05), Radiopacities of Dyract$^{(R)}$ AP, Compoglass$^{(R)}$, and Tetric flow$^{(R)}$ were greater than those of Revolution$^{TM}$, Aeliteflo$^{TM}$, or dentin (p<0.05). 3. Radiopacities of Dyract$^{(R)}$ AP, Compoglass$^{(R)}$, and Tetric flow$^{(R)}$ were shown to be greater than that of enamel when conventional radiography and CD-Dent digital radiography were used (p<0.05). Radiopacity of Dyract flow$^{(R)}$ was shown to be greater than that of Enamel when conventional radiography was used (p<0.05).

  • PDF

Dimensional Changes of Ceromer Crown by Water Absorption (치과용 심미수복재료 세로모에서 수분흡수와 체적 변화에 관한 연구)

  • Lee, Jong-Hyuk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • Statement of problem: The increasing demand for esthetic restorations has been required developing new materials for tooth colored restoration. Ceromer(Ceramic Optimized Polymer) has some advantages over porcelain, and has gained increasing popularity in restorative dentistry. However, there is little information on the dimensional changes in a clinical restoration in moist conditions. Purpose: This study examined the dimensional changes in Ceromer restorations with a clinical crown shape that were fabricated in a clinical manner. Material and methods: The crowns for the maxillary central incisor were fabricated with two Ceromers($BelleGlass^{(R)}$ and $Targis^{(R)}$) using a similar clinical restoration manufacturing technique. A total of twenty specimens were prepared and immersed in distilled water at room temperature to allow for water absorption. The weight, height and width were measured at 24, 72 and 168 hours. The accumulated ratios of the changes were calculated and evaluated using a paired t-test and an independent independent t-test. Results: The dimensions and weight increased with increasing soaking time. $Targis^{(R)}$ showed significant differences in height and weight between 24 hours and the other times(P<.05). $BelleGlass^{(R)}$ showed significant differences in width and weight between 24 hours and the other times. The two materials showed different changing patterns of the dimensions but there were no statistically significant differences between them. Conclusion: The dimensions and weight of the Ceromer restorations were changed by water absorption. The clinical crown shaped specimen showed more complicated dimensional changes than the simplified specimens.