• Title/Summary/Keyword: Tooth Protein

Search Result 106, Processing Time 0.023 seconds

BIOASSAY OF HUMNA TOOTH PROTEIN BLOTTED POLYVINYLIDENE DIFLUORIDE(PVDF)MEMBRANE (사람치아 단백질을 분리 흡착한 PVDF막의 생체반응에 관한 연구)

  • Kang, Na-Ra;Hong, Jong-Rak;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.3
    • /
    • pp.186-192
    • /
    • 2004
  • Purpose: Human tooth proteins are highly heterogeneous, comprising diverse proteins derived from a number of genes. The attempts to identify protein for activity of tooth matrix proteins have been defied by several factors. First, the amount of proteins within teeth is very small relative to many extracellular matrix proteins of other tissues. Second, the bioassay system is tedious and needed for long time. Therefore we tried to find easy techniques, which increase the product rate, and an assay of small proteins, with which amino acid sequence is possible without additional procedures. Materials and Methods: Total protein were extracted from 300 g enamel removed teeth and 600 g teeth with 4 mol/L guanidine HCl and purified by gel chromatography. Aliquot of proteins was implanted into muscle pouches in Sprague-Dawley rats for bioassay. By SDS-PAGE and membrane blotting, molecular weight of each protein was estimated and a partial amino acid sequence was obtained. Each fraction blotted on the membrane was cut out and inserted in rat ectopic model. Results: In dissociative method, total tooth proteins were obtained 1mg/ml from enamel removed teeth and 3.5 mg/ml from teeth. In SDS-PAGE, four clear bands at the sites corresponding to 66, 40, 20 and 18 kD. Especially The 66 kD band was clearly exhibited. Amino acid sequencing from tooth could be possible using PVDF membrane blotting technique. In amino acid sequencing, 66 kD protein was identified as albumin. Conclusion: Compared with conventional method for extraction of teeth protein and bioassay of proteins, the methods in this study were easy, time-saving and more productive technique. The matured tooth proteins omitting additional procedure of mechanical removal of enamel were simply analyzed using blotted PVDF membrane. This method seems to make a contribution as a technique for bioassay and amino acid sequencing of protein.

Expression of PDL-specific protein;PDLs22 on the developing mouse tooth and periodontium (발생중인 생쥐 치아 및 치주조직에서 치주인대-특이 단백질; PDLs22의 발현)

  • Park, Jung-Won;Park, Byung-Ki;Kim, Sang-Mok;Kim, Byung-Ock;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • The periodontal ligament(PDL) is a unique tissue that is crucial for tooth function. However, little is known of the molecular mechanisms controlling PDL function. PDL-specific protein;PDLs22 had been previously identified as a novel protein isolated from cultured human PDL fibroblasts using subtraction hybridization between human gingival fibroblasts and PDL fibroblasts. The aim of this study was to examine the expression pattern and tissue localization of PDLs22 protein in embryonic and various postnatal stages of developing mouse using immunohistochemical staining. Embryos (E18) and postnatal (P1, P4, P5, P15, P18) were decapitated and the heads were fixed overnight in a freshly prepared solution of 4% paraformaldehyde. Some specimens were decalcified for $2{\sim}4$ weeks in a solution containing 10% of the disodium salt of ethylenediamine-tetraacetic acid (EDTA). Next, tissues were dehydrated, embedded in paraffin and sectioned serially at $6{\mu}m$ in thickness. Polyclonal antiserum raised against PDLs22 peptides, ISNKYLVKRQSRD, were made. The localization of PDLs22 in tissues was detected by polyclonal antibody against PDLs22 by means of immunohistochemical staining. The results were as follows; 1. Expression of PDLs22 protein was not detected in the tooth germ of bud and cap stage. 2. At the late bell stage and root formation stage, strong expression of PDLs22 protein was observed in developing tooth follicle, osteoblast-like cells, and subodontoblastic cells in the tooth pulp, but not in gingival fibroblasts, ameloblasts and odontoblasts of tooth germ 3. In erupted tooth, PDLs22 protein was intensely expressed in PDL and osteoblast-like cells of alveolar bone, but not in gingival fibroblasts, mature osteocytes and adjacent salivary glands. 4. In the developing alveolar bone and mid-palatal suture, expression of PDLs22 protein was seen in undifferentiated mesenchymal cells and osteoblast-like cells of developing mid-palatal suture, but not in mature osteocytes and chondrocytes. These results suggest that PDLs22 protein may play an important role in the differentiation of undifferentiated mesenchymal cells in the bone marrow and PDL cells, which can differentiate into multiple cell types including osteoblasts, cementoblasts, and PDL fibroblasts. However, more researches should be performed to gain a better understanding of the exact function of PDLs22 protein which related to the PDL cell differentiation.

Alteration of LAR-RPTP Expression in the Rat Trigeminal Ganglion after Tooth Extraction

  • Kim, Sun-Hun;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.167-172
    • /
    • 2011
  • LAR-RPTP (leukocyte common antigen-related receptor protein tyrosine phosphatase) is an important regulator in the nervous system, but little is known about its expression pattern in rat trigeminal ganglion (TG) neurons. To examine whether LAR-RPTP is expressed in the TG in the current study, we sacrificed rats at 0, 7, 10 and 56 day postpartum (dpp) and a second group of rats at 3 and 5 days after an experimental tooth extraction as a TG injury model. RT-PCR was then used to determine the level of LAR-RPTP expression in the TG and immunohistology was employed to detect the subcellular localization of the protein. The mRNA expression of LAR-RPTP during the developmental stages in the TG was found to gradually increase. After experimental tooth extraction however, these transcript levels had significantly decreased at three days. LAR-RPTP protein signals in the TG were found to be cytoplasmic in the normal animals but interestingly, at five days after an experimental tooth extraction, these signals were rare. These results indicate that LAR-RPTP may be regulated during both the developmental as well as regenerative processes that take place in the TG. This further suggests that LAR-RPTP is not only involved in primary axonogenesis but possibly also in the molecular control of axons during TG repair.

The Effects of Irradiation and Calcium-deficient Diet on the Expression of Bone Morphogenetic Protein-2/4 during Early Tooth Development (치아발육시 방사선조사와 칼슘결핍이 골형성단백질-2/4의 분포에 미치는 영향에 관한 여구)

  • Park Dai-Hee;Hwang Eui-Hwan;Lee Sang-Rae
    • Imaging Science in Dentistry
    • /
    • v.30 no.3
    • /
    • pp.169-181
    • /
    • 2000
  • Purpose: To investigate the expression of bone morphogenetic protein (BMP)-2/4 during eary tooth development after irradiation and calcium-deficient diet. Materials and Methods: The pregnant three-week-old Sprague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group (Group 1), and the experimental groups were irradiation/normal diet group (Group 2) and irradiation/calcium-deficient diet group (Group 3). The abdomen of the rats at the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed at embryonic 18 days, 3 days and 14 days after delivery and the maxillae tooth germs were taken. The tissue sections of specimen were stained immunohisto-chemically with anti-BMP-2/4 antibody. Results: At embryo-18 days, immunoreacivity for BMP-2/4 of the Group 1 was modetate in stratum intermedium of dental organ and weak in dental papilla and dental follicle, but that of Group 2 was weak in cell layer of dental organ, and no immunoreacivity was shown in dental papilla and dental follice of Group 2 and in all tissue components of the Group 3. At postnatal-3 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in cell layer of dental organ, odontoblasts and developing alveolar bone, but that of Group of 2 and Group 3 was weak in odontoblasts and developing alveolar bone. At postnatal-14 days, immunoreacivity for BMP-2/4 of the Group 1 was strong in newly formed cementum, alveolar bone and odontoblasts, but that of Group 2 was weaker than that of Group 1. In the Group 3, tooth forming cell layer showed weak immunoreactivity, but other cell layers showed no immunoreactivity. Couclusion : The expression of bone morphogenetic protein (BMP)-2/4 during early tooth development was disturbed after irradiation and calcium-deficient diet.

  • PDF

Protein Inhibition Precipitation of Calcium Phosphate in Human Saliva (인간 타액내 항 린산칼슘 침전 단백질)

  • Song Han
    • Journal of Oral Medicine and Pain
    • /
    • v.20 no.1
    • /
    • pp.7-18
    • /
    • 1995
  • The Purpose of this article is to describe the biochemical properties and biological functions of several salivary proteins that possess the unusual properties of inhibiting spontaneous and secondary precipitation of calcium phosphate. This function is very important since human salivary secretion is supersaturated with respect to calcium phosphate. Biological function of statherin, proline rich protein (PRP) and histidine rich protein (HRP) is to inhibit precipitation of calcium phosphate in salivary glands, in the oral fluids, and onto tooth surfaces. The resulting supersaturated state of the salivary secretions contributes a protective and reparative environment which is important for the integrity of the tooth. Beneficial consequences of salivary supersaturation with respect to calcium phosphate are selectively expressed in the oral cavity- that is, protection is provided for the dental enamel-while undesirable consequences, for example, precipitation of calcium phosphates in the salivary glands and onto the teeth do not occur. Purification and structural characteristics of these proteins as well as clinical significance of functions of each protein will be discussed.

  • PDF

Comparisons of orthodontic root resorption under heavy and jiggling reciprocating forces during experimental tooth movement in a rat model

  • Hikida, Takuji;Yamaguchi, Masaru;Shimizu, Mami;Kikuta, Jun;Yoshino, Tomokazu;Kasai, Kazutaka
    • The korean journal of orthodontics
    • /
    • v.46 no.4
    • /
    • pp.228-241
    • /
    • 2016
  • Objective: Root mobility due to reciprocating movement of the tooth (jiggling) may exacerbate orthodontic root resorption (ORR). "Jiggling" describes mesiodistal or buccolingual movement of the roots of the teeth during orthodontic treatment. In the present study, buccolingual movement is described as "jiggling." We aimed to investigate the relationship between ORR and jiggling and to test for positive cell expression in odontoclasts in resorbed roots during experimental tooth movement (jiggling) in vivo. Methods: Male Wistar rats were divided into control, heavy force (HF), optimal force (OF), and jiggling force (JF) groups. The expression levels of cathepsin K, matrix metalloproteinase (MMP)-9 protein, interleukin (IL)-6, cytokine-induced neutrophil chemoattractant 1 (CINC-1; an IL-8-related protein in rodents), receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL), and osteoprotegerin protein in the dental root were determined using immunohistochemistry. Results: On day 21, a greater number of root resorption lacunae, which contained multinucleated odontoclasts, were observed in the palatal roots of rats in the JF group than in rats from other groups. Furthermore, there was a significant increase in the numbers of cathepsin K-positive and MMP-9-positive odontoclasts in the JF group on day 21. Immunoreactivities for IL-6, CINC-1, and RANKL were stronger in resorbed roots exposed to jiggling than in the other groups on day 21. Negative reactivity was observed in the controls. Conclusions: These results suggest that jiggling may induce ORR via inflammatory cytokine production during orthodontic tooth movement, and that jiggling may be a risk factor for ORR.

Alteration of cellular events in tooth development by chemical chaperon, Tauroursodeoxycholic acid treatment

  • Lee, Eui-Seon;Aryal, Yam Prasad;Kim, Tae-Young;Pokharel, Elina;Kim, Harim;Sung, Shijin;Sohn, Wern-Joo;Lee, Youngkyun;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.190-196
    • /
    • 2020
  • Several factors, including genetic and environmental insults, impede protein folding and secretion in the endoplasmic reticulum (ER). Accumulation of unfolded or mis-folded protein in the ER manifests as ER stress. To cope with this morbid condition of the ER, recent data has suggested that the intracellular event of an unfolded protein response plays a critical role in managing the secretory load and maintaining proteostasis in the ER. Tauroursodeoxycholic acid (TUDCA) is a chemical chaperone and hydrophilic bile acid that is known to inhibit apoptosis by attenuating ER stress. Numerous studies have revealed that TUDCA affects hepatic diseases, obesity, and inflammatory illnesses. Recently, molecular regulation of ER stress in tooth development, especially during the secretory stage, has been studied. Therefore, in this study, we examined the developmental role of ER stress regulation in tooth morphogenesis using in vitro organ cultivation methods with a chemical chaperone treatment, TUDCA. Altered cellular events including proliferation, apoptosis, and dentinogenesis were examined using immunostaining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, altered localization patterns of the formation of hard tissue matrices related to molecules, including amelogenin and nestin, were examined to assess their morphological changes. Based on our findings, modulating the role of the chemical chaperone TUDCA in tooth morphogenesis, especially through the modulation of cellular proliferation and apoptosis, could be applied as a supporting data for tooth regeneration for future studies.

Tooth dentin regeneration and its clinical application (치아 상아질의 재생과 그 임상적 활용)

  • Bae, Hyun Sook;Park, Joo-Cheol
    • The Journal of the Korean dental association
    • /
    • v.55 no.5
    • /
    • pp.352-357
    • /
    • 2017
  • Teeth are made up of three hard tissues, enamel, dentin, and cementum. The dental pulp is the only non-mineralized connective tooth tissue that is surrounded by dentin. The dentin-pulp complex is able to respond to injury by producing hard tissue deposition. However, dentin is considered one of the most difficult tissues to regenerate because of its unique anatomic and physiologic nature. Recently, advances in understanding the applicability of bio-active dentin regenerating proteins are emerging with the development of biological-based therapies using bio-active materials. Dentin defects were regenerated by the deposition of tubular physiologic dentin after application of the bio-active protein in a beagle dog model. Therefore, the bio-active protein may be able to serve as a novel dentin regenerating material and improve symptoms of dentin hypersensitivity.

  • PDF

Expression of Thymosin β4 in Ameloblasts during Mouse Tooth Development

  • Choi, Baik-Dong;Lee, Seung-Yeon;Nho, Tae-Hee;Jeong, Soon-Jeong;Lim, Do-Seon;Bae, Chun-Sik;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.58-66
    • /
    • 2016
  • Thymosin ${\beta}4$ ($T{\beta}4$) has been recently reported to play a role in dentinogenesis by regulating the expression of dentin matrix proteins. Based on previous studies, it is hypothesized that $T{\beta}4$ is associated with the formation of the enamel matrix and thus plays an important role in ameloblast. However, there is no report on the function of $T{\beta}4$ during tooth development so far. Therefore, in this study, we aimed to investigate the expression of $T{\beta}4$ and its function in ameloblasts during mouse tooth development. $T{\beta}4$ was expressed strongly in the tooth bud at the bud stage and in the dental lamina and oral epithelium at the cap stage. In advanced bell stage at postnatal day 4, large elongated ameloblasts were observed and the expression of the $T{\beta}4$ protein was the highest, with the enamel being was thicker than that in the early bell stage. The length of ameloblasts increased from the presecretory to the secretory stage and decreased from the maturation to the protective stage. These results suggest that $T{\beta}4$ participates not only in the proliferation of oral epithelial cells during the early stage of tooth development but also regulates enamel protein secretion in ameloblasts and enamel mineralization.

THE ROLE OF BONE MORPHOGENETIC PROTEIN IN THE TOOTH CULTURE (치아 기관배양시 골형성단백의 역할에 관한 연구)

  • Chung, Il-Hyuk;Chung, Jong-Hoon;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • Objectives : The proper development of the facial structures relies upon a sequence of tightly regulated signaling interactions between the ectoderm and mesoderm involving the participation of several families of signaling molecules. Among these, bone morphogenetic proteins (BMPs) have been suggested to be a key signal that regulates the development of the mandible and the initiation and morphogenesis of the teeth. The aim of this study was to examine the artificial development of the mandibular structures and to examine the role of BMPs on tooth morphogenesis and differentiation using an organ culture system. Materials and Methods : The tooth germs from Ed 11.5, 13.5 mice were dissected, and transplanted into the diastema of the mandible primordia. The mandibles containing the transplanted tooth germs were cultured in vitro. During this period, beads soaked with BMP4 were implanted around the transplanted tooth germs. In addition, a diastema block containing the transplanted tooth germ was dissected, then transferred to an adult mouse kidney. After the organ culture, the developing mandibular explant was removed from the kidney and prepared for the tissue specimens. Odontogeneis of the transplanted tooth germs was examined after Hematoxylin-eosin, Masson-trichrome staining. Results : Proliferation and differentiation of the tooth germs cultured in the diastema was observed. In the BMP4-treated tooth germs, the formation of the first and second molars was noted. The crown of the developing tooth showed the formation of a mature cusp with the deposition of enamel and dentin matrix. In conclusion, it was confirmed that BMP4 is involved in the formation of a dental crown and the differentiation of ameloblasts and odontoblasts of the molar tooth during the development of the transplanted tooth germs.