• Title/Summary/Keyword: Tooth Contact Stress

Search Result 76, Processing Time 0.025 seconds

Contact Stress Analysis of a Pair of Mating Spur Gears (스퍼기어의 접촉응력 해석)

  • Lee, Jin-Hwan;Lee, Dong-Hyong;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.59-65
    • /
    • 2010
  • This paper presents the study on the contact stress analysis of a pair of mating spur gears during rotation. Contact stress analysis is performed between two spur gear teeth at different contact positions during rotation. An example is presented to investigate the variation of contact stress on a pair of mating gears with contact positions. The variation of contact stress during rotation is compared with the contact stress at lowest point of single tooth contact(LPSTC) and AGMA Equation for contact stress. The results show that contact stress varies along the contact position and gets maximum values in the beginning and end of the contact. In this study, the gear design considering the contact stress on a pair of mating gears is more severe than that of AGMA standard.

Optimization of the Gear Tooth Crowning Amount Considering Contact Subsurface Stress (표면아래응력을 고려한 기어이의 크라우닝 최적화에 관한 연구)

  • Lee, Sang-Don;Kim, Jong-Sung;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.38-42
    • /
    • 2009
  • Gear is an essential component of an automotive. Crowning is used for tooth modification of a gear. The basic concept of gear tooth crowning is to reduce the stress concentration in edge of contact area and appropriate profile modifications can help gears to resist scoring, pitting, and tooth breakage. In this study, a method to determinate spur gear tooth crowning amount to make smooth surface stress and subsurface stress distribution is proposed. This method is based on the contact analysis.

A Stress Analysis on the Involute-Circular Arc Composite Tooth Profile Gear (인벌류우트-圓弧 合成齒形기어의 應力解析)

  • 탁계래;최상훈;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.198-204
    • /
    • 1987
  • In a new involute-circular arc tooth profile which is composed of an involute curve in the vicinity of pitch point, a circular arc in the addendum part, and a curve in the dedendum part which is generated by the circular arc profile of mating gear tooth profile, the tooth contact stress is calculated analytically and the root fillet stress is calculated by the finite element analysis. The root fillet stress and the Hertzian contact stress of composite tooth profile gear are decreased with increasing the pressure angle and with decreasing the radius of circular arc and unwound angle. Compared with the standard involute gear, the root fillet stress is decreased by 2-15% and the Hertizian contact stress is decreased by 6-24%.

Analysis on load-bearing contact characteristics of face gear tooth surface wear with installation errors

  • Fan Zhang;Xian-long Peng
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.163-171
    • /
    • 2023
  • Face gear transmission is widely used in aerospace shunt-confluence transmission system. Tooth wear is one of the main factors affecting its bearing transmission performance. Furthermore, the installation errors of face gear are inevitable. In order to study the wear mechanism of face gear tooth surface with installation errors, based on tooth contact analysis numerical method and Archard wear theory, the UMESHMOTION subroutine in ABAQUS is developed.Combining with Arbitrary Lagrangian-Eulerian adaptive mesh technology, the finite element mesh wear model of abraded face gear pair is established.The preprocessing conditions are set to generate the inp files.Then,the inp files for each corner are imported and batch processed in ABAQUS.The loading tooth contact problem at each rotation angle is solved and the load distribution coefficient among gear tooth, tooth root bending stress, tooth surface contact stress and loaded transmission error are obtained. Results show that the tooth root wear is the most serious and the wear at the pitch cone is close to 0.The wear law of tooth surface along tooth width direction is convex parabola and the wear law along tooth height direction is concave parabola.

Contact Stress Analysis of Helical Gear for Turbo Blower (터보블로워용 헬리컬 기어의 접촉응력 해석)

  • Hwang, Seok-Cheol;Lee, Dong-Hyong;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • This paper presents the study on the contact stress analysis of a pair of mating helical gears for turbo blower during rotation. Turbo blowers need high speed rotation of impeller in structure and high rate gear ratio. The use of helical gear indicated that noise was an important problem when the application involves high speeds and large power transmission. An example is presented to investigate the variation of contact stress on a pair of mating gears with contact positions. The variation of contact stress during rotation is compared with the contact stress at the lowest point of single tooth contact(LPSTC) and AGMA Equation for contact stress. In this study, the gear design considering the contact stress on a pair of mating gear is more severe than that of AGMA standard.

Sub-surface Stress Analysis on Spur Gear Teeth in the EHL Conditions

  • Koo, Young-Pil;Kim, Tae-Wan;Cho, Yong-Joo
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2004
  • The sub-surface stress field beneath the gear's contact surface caused by the surface pressure in lubricated condition is analyzed. To evaluate the influence of the clearances between a gear tooth and a pinion tooth on the stress field, two kinds of tooth profile models - conventional cylinder contact model and new numerical model - were chosen. Kinematics of the gear is taken into account to obtain the numerical model which is the accurate geometric clearances between a gear tooth and a pinion tooth. Transient elasto-hydrodynamic lubrication (EHL) analysis is performed to get the surface pressure. The sub-stress field is obtained by using Love's rectangular patch solution. The analysis results show that the sub-surface stress is quite dependent on both the surface pressures and the profile models. The maximum effective stress of the new model is lower than that of the old model. The depth where the maximum effective stress occurs in the new model is not proportional to the intensity of the external load.

Study on Scoring of Hypoid Gear Set in Bus with Retarder (리타더 장착 버스 하이포이드 기어의 스코링에 관한 연구)

  • Yang, J.H.;Kim, Y.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.102-109
    • /
    • 2009
  • A retarder, as a supplementary brake system that is not friction-based, is frequently used in heavy-duty vehicles generally to slow the vehicles down on inclines. The electric retarder mainly used in a heavy-duty bus is generally placed between the transmission and the axle. The rotor inside the retarder system is attached to the axle. The operation of the retarder within a driven vehicle generates reverse torque due to coast driving force on hypoid gears in the differential gear system. By the reverse torque, scoring or scuffing on the hypoid gear teeth may directly occur. The scoring may be generated due to excessive contact stresses on the tooth surface. In this study, tooth contact stresses and contact patterns were analysed in order to investigate on the tooth scoring phenomenon using a finite element analysis program T900 in which the Hertzian contact stress formula was taken. Backlash, wear and surface finish were considered in the finite element simulation on the scoring.

  • PDF

A Study on Optimization of Tooth Micro-geometry for a Helical Gear Pair (헬리컬 기어의 치형최적화에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2011
  • Nowadays, modern gearboxes are characterized by high torque load demands, low running noise and compact design. Also durability of gearbox is specially a major issue for the industry. For the gearbox which used in wind turbine, gear transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, tooth modification for the high speed stage is used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox is firstly modeled in Romax software, and then the various combination analysis of the tooth modification is presented by using Windows LDP software, and the prediction of transmission error under the loaded torque for the helical gear pair is investigated, the transmission error, contact stress, root stress and load distribution are also calculated and compared before and after tooth modification under one torque condition. The simulation result shows that the transmission error and stress under the loads can be minimized by the appropriate tooth modification.

Analysis of Tooth Strength and Cutter Tooth Profile in Harmonic Drive Reducer (조속식 감속기의 치 강도 및 커터치형 해석)

  • 전완주;오박균
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 1989
  • This paper deals with strength analysis of tooth and method of manufacture of external tooth profile in harmonic drive. From the calculation of load imposed on the contact teeth, moximum contact stress is investigated to design the addendum modification coefficient. New tooth profile of the external gear is generated according to the law of gearing, assuming that internal gear has involute tooth profile. External tooth profile can't be manufactured by conventional exclusive tools which have pressure angle of 20$\circ$. The method to design cutter tooth profile is presented.