• 제목/요약/키워드: Tool wear patterns and mechanism

검색결과 2건 처리시간 0.019초

가공성 세라믹 절삭에서 공구의 마멸 패턴과 메카니즘 (Wear Patterns and Mechanisms of Cutting Tool in Cutting of Machinable Ceramics)

  • 장성민;백승엽
    • 한국안전학회지
    • /
    • 제25권5호
    • /
    • pp.1-6
    • /
    • 2010
  • When the ceramic material is being machined, micro crack and brittle fracture dominate the process of material removal. Generally, ceramics are very difficult-to-cut materials and machined using conventional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Machinable ceramics used in this study contain BN powder to overcome these problem and for productivity elevation. This paper focuses on machinability evaluation during end mill process with CNC machining center in this study. Experiment for this purpose is performed for tool wear patterns and mechanism.

목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제2보(第2報)) - 정면(正面)밀링 절삭(切削)에 의한 절삭저항(切削抵抗), 표면조도(表面粗度) 및 가공표면상태(加工表面狀態) - (Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Cutting Force, Surface Roughness and Suface Phenomenon by Face Milling -)

  • 김정두
    • Journal of the Korean Wood Science and Technology
    • /
    • 제16권4호
    • /
    • pp.61-69
    • /
    • 1988
  • Recently the automization of wood manufacturing and the development of CNC machine tools becomes the center of interest. Cutting mechanism, tool wear and the roughness of machined surface have been studied. In the studies about wood for special uses, concrete data of cutting is desired. While Pinus densiflora is characterized that heartwood develops as age increases, Chunyang District has the characteristic of strength, red color, relatively regular chap and high heartwood - percentage. But there is no data about cutting this wood, Chunyang District. In this study face milling by sintered carbide tool was excuted to Chunyang District. Cutting force, Surface roughness and states were investigated with regard to cutting speed. Example results were as follows; 1) Mean cutting resistance against lateral component force and longitudinal component force decreased rapidly up to cutting speed of 155 m/min, and remains constant above this speed. 2) The surface roughness of cutting surface lowered as cutting speed increased, regardless of fiber formation. Radial rougness of fiber is larger than lineal surface roughness. 3) Increase in Cutting speed made machining mark restrained. Down-milling showed larger marks than up-milling.

  • PDF