• 제목/요약/키워드: Tool temperature

검색결과 1,253건 처리시간 0.032초

공구내부냉각에 의한 고장력합금강의 피삭성에 관한 연구 (A Study on the Machinability of High Strength Steel with Internally Cooled Cutting Tool)

  • 김정두
    • Tribology and Lubricants
    • /
    • 제5권1호
    • /
    • pp.44-50
    • /
    • 1989
  • High strength steel is similar to carbon steel in its composition. This material is developed originally for special uses such as aerospace and automobile due to its high strength and shock-free property in spite of lightness. But the chemical attraction of high strength steel is serious, which includes comminution of formation, metalization and strengthening. Machining results in built-up edge between this material and the tool. Especially the work hardening behavior results in tool life shortening, which was caused by temperature generation during machining. In this study, cooling system was made in which liquid nitrogen is supplied to circulate in order to make up for these weaknesses. Machining of high strength steels, which is recognized as difficult to machine materials, was conducted after tool is cooled at -195$\circ$C. Experimental results showed that the tool was cooled down rapidly below -195$\circ$C in about 200 seconds. The tool temperature of machining with cooling system was lowered by 60~95$\circ$C than that of machining in room temperature. The hardness of the surface of chip is decreased by machining with cooling system. And the machining using the cooling system made it possible to increase shear angle, to retain smooth surface on chip without built-up-edge and to get a better roughness.

Characterization of Tribolayers and Sliding wear at High Temperature between AlCrN Coated Tool Steels and Ultra-high Strength Boron Steels

  • Choi, Byung-Young;Gu, Yoon-Sik
    • 열처리공학회지
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2011
  • High temperature wear of AlCrN coated tool steels sliding against the ultra-high strength boron steels used for hot press forming has been studied. The sliding wear tests have been carried out using a pin-on-disc of configuration under applied normal load of 50 N for 20 min with heating the ultra-high strength boron steels up to $800^{\circ}C$. Characterizations of tribolayers formed on the contacting surfaces between the tribopairs of the AlCrN coated tool steels and the ultra-high strength boron steels have been studied. It was found on the tribolayers of the AlCrN coated tool steels that microcracking and oxides containing Fe and Cr to increase friction coefficient were formed at the early stage of sliding wear, followed by the generation of the smeared oxide layers containing Fe transferred from the tribopair to decrease friction coefficient. This may mainly contribute to very low specific wear rate of the AlCrN coated tool steels sliding against the ultra-high strength boron steels, resulting from oxideoxide contact between the tribopair.

공작기계 주축 열변형 보정을 위한 실험방법에 관한 연구 (Research on the Experiment Methods for the Compensation of Thermal Distortion of Machine Tool Spindle)

  • 고태조;김희술;김형식;김선호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.375-379
    • /
    • 1997
  • Thermal drift of the machine tool spindle due to temperature increase dominates the major source of the machine tool error. To compensate the thermal errors, software based error correction methods could be implemented. In th~s case, we need model to map the relationship between temperature and thermal distortion. Traditionally, two or three different methods have been trled: step increase of spindle speed, constant, random. The latter two methods are described in the document of ISOlDIS230-3. In this research, three different methods were verified through the experiments from the viewpoint of compensation of thermal distortion. Constant spindle speed turned out good enough for monitoring the behavior of the thermal drift and modeling the relationship between temperature and thermal distortion.

  • PDF

극저온이 22MnB5강의 냉간 스탬핑 마모에 미치는 영향 (Effects of Cryogenic Temperature on Wear Behavior of 22MnB5 Under Cold Stamping)

  • 지민기;노연주;강현학;전태성
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.241-246
    • /
    • 2022
  • This paper presents the effects of cryogenic temperature on the wear behavior of 22MnB5 blank under cold stamping. After immersing the blank in liquid nitrogen (LN2) for 10 min, a strip drawing test was performed within 10 s. The hardness was measured using the Rockwell hardness test, which increased from 165 HV at 20℃ to 192 HV at cryogenic temperature. The strip drawing test with 22MnB5 blank and SKD61 tool steel shows that for the different wear mechanisms on the tool surface with respect to temperature; adhesive wear is dominant at 20℃, but abrasive wear is the main mechanism at cryogenic temperature. As the friction test is repeated, sticking gradually increases on the tool surface at 20℃, whereas the scratch increases at cryogenic temperature. For the friction behavior, the friction coefficient rapidly increases when adhesive wear occurs, and it occurs more frequently at 20℃. The results for nanoindentation near the worn blank surface indicate a difference of 1.3 GPa at 20℃ and 0.8 GPa at cryogenic temperature compared to the existing hardness, indicating increased deformation by friction at 20℃. This occurs because thermally activated energy available to move the dislocation decreases with decreasing temperature.

지르코니아계 세라믹스의 저온냉각절삭과 공구마멸 해석에 관한 연구 (A study on the machinability of ceramics in zirconia system by low temperature cooling)

  • 김정두
    • 오토저널
    • /
    • 제12권2호
    • /
    • pp.59-70
    • /
    • 1990
  • Crack of breaking toughness of most Ceramics material is 1-5MPa .root.m but that of Zirconia Ceramics is improved to be 6-8MPa .root.m and its development of machining difficult-to-machine material is on the rise as urgent subject. For general Zirconia Ceramics machining, diamond grinding wheel is generally used by selecting an appropriate one and establishing grinding condition but due to such limitations as economics, grinding efficiency and machining geometry, great interest in machining method being used for diamond tool is emphasized. But it is reported that diamond tool is oxidized by cutting heat in the air and is graphitized in vacuum, which causes bad effects on tool life. In this study, to restraint cutting heat the internal side of tool is cooled, and restraint low temperature cooling system and being experimented. Further, the machinability of diamond tool for Zirconia Ceramics machining is analyzed with respect to tool wear and stress.

  • PDF

CFRP 드릴링 공정에서의 공구의 특성에 따른 절삭부하와 공구마모 거동의 고찰 (Study on Tool Wear and Cutting Forces by Tool Properties in CFRP Drilling)

  • 박동섭;정영훈
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.83-88
    • /
    • 2017
  • Recently, the use of advanced materials with light weight significantly increases because of global regulation on CO2 emission. Especially, CFRP (carbon fiber reinforced plastics) one of the most promising advanced materials. Since CFRP has pretty higher strength per unit weight than steel, it is one of most popular materials in aviation industry and its application to automobile rises sharply. Especially, one of the frequent machining processes for CFRP is drilling to make a hole, however, CFRP drilling has troublesome limitations in hole quality and productivity induced due to delamination, splintering and severe tool wear. Particularly, cutting loads increase caused by tool wear makes delamination and splintering even severer. Therefore, tool wear monitoring or reduction in CFRP drilling must be considered seriously. In this study, we measured thrust force, flank wear, and tool surface temperature in drilling using various tools with different sizes and materials. Consequently, it was presented the effects of tool properties on drilled hole quality, thrust force and tool surface temperature.

고정밀 공작기계 주축계의 냉각특성에 관한 연구 (A Study on the Coling Charaacteristics of a High Precision Machine Tool spindle)

  • 김수태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.12-17
    • /
    • 1997
  • Unsteady-state temperature distributions and thermal deformations of a high presision spindle are stueied in this paper. Thress dimensional model is built for analysis, and the amount of heat transfer coefficient are estimated. Temperature distributions and thermal deformations of a model are analyzed using the finite element method and the thermal boundary values. Numerical results are compared with the measured data. The results show that the thermal deformations and the temperature distributions of a high precision machine spindle can be reasonably estimated using the three dimensional model and the finite element method, and that the temperature rise by the heat generation of the bearing is effectively lowered by cooling of the shaft and the housing of a machine tool spindle.

  • PDF

공작기계 주축 거동시 온도분포 특성에 관한 연구 (A Study on the Thermal Distribution Analysis of Operational Spindle System of Machine Tool)

  • 임영철;김종관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.980-984
    • /
    • 2002
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design condidering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verified the test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirm approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective method in thermal-appropriate design.

  • PDF

제관용 Sl7C의 소재온도에 따른 가공성 평가 (Machinability Evaluation of Sl7C Steel according to Workpiece Temperature)

  • 정영훈;김전하;강명창;김정석;김정근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.493-497
    • /
    • 2002
  • In the part industry, pipe has required high accuracy in surface roughness and size. Especially, when producing the high frequency welding pipe, cutting process is very important as the finishing process that remove the hot welding bead. The objective of this paper is to investigate the hot machining high frequency welded pipe by simulation and experimental tests. To test the cutting process as hot machining, all cutting environment is reproduced in turning with heating system, and the test is accomplished by comparing with room temperature machining and hot machining in consideration of cutting force, tool wear and cutting temperature.

  • PDF

박판 스프링용 탄소공구강재(SK4M)의 시험온도에 따른 기계적 특성 (The Effects of the Testing Temperatures on the Mechanical Properties of the Carbon Tool Steel(SK4M) for Flat Spring)

  • 류태호;원시태;박상언;임철록
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.693-696
    • /
    • 2002
  • This study examined the effects of the testing temperature on the mechanical properties of the carbon tool steel (SK4M) for flat spring. Hardness test and fatigue test were performed at room temperature ($20^{\circ}C$). Tensile test and creep test were performed at temperature range $20^{\circ}C$ ~$160^{\circ}C$. The micro-vickers hardness values of SK4M was Hv=584. The Elastic modulus, tensile strength and yield strength of SK4M at 160t test temperature were decreased 0.92 time, 0.97 time and 0.82 time those of SK4M at 2$0^{\circ}C$ test temperature, respectively. The maximum creep strain for 100hr at creep temperature ($80^{\circ}C$ ~$160^{\circ}C$) and creep stress ($37.4Kgf/\textrm{mm}^2$ ~$93.6Kgf/\textrm{mm}^2$) was 0.572%. The fatigue limit of SK4M was $94Kgf/\textrm{mm}^2$.

  • PDF