• Title/Summary/Keyword: Tool shape

Search Result 1,361, Processing Time 0.031 seconds

A Study on Shape Design Approach of Cylindrical Cam for Automatic Tool Changer Using Relative Velocity (상대속도를 이용한 자동공구교환장치용 원통 캠의 형상 설계에 관한 연구)

  • Kim, S.W.;Shin, J.H.;Kang, D.W.;Chang, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.813-817
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedure must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and coordinate transformation are used to find a contact point between cam and follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the sape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

Prediction of Deformation of Carbon-fiber Reinforced Polymer Matrix Composite for Tool Materials and Surface Conditions (성형툴의 상태에 따른 탄소섬유강화 복합재 구조물의 변형 예측)

  • Sung, Su-Hwan;Kim, Wie-Dae
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.231-235
    • /
    • 2014
  • Autoclave processing has a good quality of product, but manufacturing cost is expansive. After curing of composite, the unwanted deformation and distortion increase the manufacturing cost by redesign of tool parts. Therefore, manufacturing cost down is a big issue in processing level. For the reduction of tool costs, it is important to investigate the effects of tool materials and tool surface conditions. In this paper, we organized user subroutine in ABAQUS to consider the thermal effects of part and tool, and the results are compared with commercial code, COMPRO. And this paper suggests reference point for the selection of tool materials to reduce manufacturing costs.

Development of Flexible Tool for Curved Surface Finishing (곡면 다듬질용 유연공구 개발)

  • 조성산;유용균;이승영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.141-146
    • /
    • 2000
  • A flexible tool is developed for automatic finishing of curved surfaces without any complicated control technique on three-axes machining center. The tool is made of thermosetting polyurethane elastomer on the surface of which aluminum oxide abrasives are mounted. Performance and durability of the tool are examined by finishing ball-end milled surfaces of high-alloyed tool steel. It is demonstrated that the tool removes cusp successfully without changing overall surface shape in relatively short time.

  • PDF

Analysis of Thermal Shock in Tool Steels for Hot Forging (열간단조 금형강의 열충격특성연구)

  • Kim, J.W.;Kim, B.J.;Jo, I.S.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.155-159
    • /
    • 2001
  • The thermal shock resistance has been investigated and compared in three hot-work tool steels. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. In this study, new test method is proposed to measure the thermal shock resistance. New method is basically based on Uddeholm' thermal shock test but some modification has been properly applied. Based on these results, some critical temperature($T_{fractures}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. The specific values of ${\Delta}T$, the temperature difference between holding temperature and $T_{fractures}$, has been successfully used as a measure of the thermal shock resistance in this study, the results showed that the thermal shock method used in this study was properly modified.

  • PDF

The Mechanism and Detection of Tool Fracture using Sensor Fusion in Cutting Force and AE Signals for Small Diameter Ball-end Milling (미세 볼엔드밀가공시 절삭력과 음향방출신호에 의한 공구 파손 검출 및 메커니즘)

  • Wang, Duck-Hyun;Kim, Won-Il;Lim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.24-31
    • /
    • 2004
  • A successful on-line monitoring system for conventional machining operations has the potential to reduce cost, guarantee consistency of product quality, improve productivity and provide a safer environment for the operator. In fine-shape machining, typical signs of tool problems such as vibration, noise, chip flow characteristics and visual signs are almost unnoticeable without the use of special equipment. These characteristics increase the importance of automatic monitoring in fine-shape machining, however, sensing and interpretation of signals ar more complex. In addition, the shafts of the mini-tools break before the typical extensive cutting edge of the tool gets damaged. In this study, the existence of a relationship between the characteristics of the cutting force and tool usage was investigated, and tool breakage detection algorithm by LabVIEW was developed and the following results are obtained. It was possible to use a relative error compare which mainly used in established experiment and investigated tool breakage detection algorithm in time domain which can detect AE and cutting force signals more effective and accurate.

  • PDF

A Study on Effect of Tool Wear Rate upon Cutting Tool Shape in a Titanium Rough Cut Machining (티타늄 황삭가공에 있어서 공구형상이 공구마모율에 미치는 영향에 관한 연구)

  • Jung, Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.27-33
    • /
    • 2019
  • The aviation industry has grown beyond the simple processing and assembling of aircraft parts and now designs and exports finished aircraft. In this study, the vertical CNC milling rotational speed and feed rate were parameters to investigate the life of tools according to their shape: (flat, round, and ball end mill) in the rough cutting of titanium. These tools are widely used in aircraft manufacturing and assembly. The purpose of this study is to measure the cutting temperature generated during the cutting process and calculate the rate of tool wear. This will be accomplished by measuring the tool weight before and after cutting the specimen and to compare it with the results of previous studies. Our study showed that the maximum cutting temperature increased as cutting time, tool rotational speed, and feed rate increased. The highest cutting temperatures were recorded for the ball, round, and flat end mill, respectively. Tool wear for the ball, round, and flat end mill increased as the speed and feed rate increased. The flat end mill exhibited the highest rate of wear from a minimum of 0.62% to a maximum of 2.88%.

Effect of Tool Angles on Surface Roughness in Face milling (정면밀링에서 공구각이 표면거칠기에 미치는 영향)

  • 이호연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.26-31
    • /
    • 1998
  • The effect of tool angles on the surface roughness in face milling is studied. First, the relation between tool angles and rotation angles is identified. Using this relationship, it is obtained that the projection of insert nose shape on cutting profile, which is a part of ellipse. The effect of spindle tilt is also considered for the tool angles. It si shown that tool angles along with nose radius and feed rate have an effect on surface roughness.

  • PDF

A Study on the Improvement of Performance of High Speed Cutting Tool using Magnetic Fluid Grinding Technique(A Performance Estimation of High Speed Cutting Tool) (자기연마기술을 이용한 고속절삭공구의 성능향상에 관한 연구 (고속절삭공구의 성능평가를 중심으로))

  • Cho J.R.;Yang S.C.;Jung Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.354-361
    • /
    • 2005
  • In high speed cutting process, due to the friction between the tool and workpiece, a temperature rise of contacting part is serious. It need to develop cutting tool for overcoming such a poor condition. So now, some studies, the optimization of tool shapes, the fine grains of tool material, multi-layer coating of tools are processing. If mirror finishing on the tool is processed, there is advantage of relation between chip and tool, because of less friction, and also tool's lift would be increased. As a result mirror like finishing is expected efficient enhancement of tool. Generally, it is too difficult to process by a general way for tools of complex shapes, it is required a new method to process such complex shape tools. The magnetic fluid polishing technique can polish the workpiece of complex shape, because the polishing method which polishes as compress the workpiece by the magnetism abrasives to arrange to the linear according to the line of magnetic force. In this paper, We polished the surface of the high speed cutting tool using the magnetic fluid polishing technique, to enhance the performance of the high speed cutting tool.

  • PDF

Design of Tool for Food Cutting with Ultrasonic Waves (초음파 식품 컷팅용 공구의 설계)

  • Park, Woo-Yeol;Jang, Ho-Su;Kim, Jung-Ho;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.80-85
    • /
    • 2012
  • The ultrasonic cutting method is which cutting by applying high frequency vibrational energy into specific area at constant pressure. Ultrasonic cutting is consisted of power supply, transducer, booster and cutting tool. Precise designing is required since each part's shape, length and mass can affect driving frequency and vibration mode. This paper focused to cutting tool design, its length L was set by calculating vibration equation. And the value of the shape parameter a was diversified as the integral multiple and the result of 40,189Hz the analysis of Modal was shown in the length 30mm of the result of performance b in the 11th mode Also by performing harmonic response analysis, the frequency response result was 40,189Hz, which was similar to modal analysis result.