• Title/Summary/Keyword: Tool System

Search Result 9,307, Processing Time 0.031 seconds

A Study on the Effective Cutting Conditions of Cage Motor Rotor Considering Production Rate ( I ) (생산효율을 고려한 상자형모터 회전자의 유효절삭조건에 관한 연구(I))

  • 김희남;박태문;하상용;이주상;김순채
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.9-19
    • /
    • 1995
  • The recent development of NC lathe and machining renter have enabled automatic or unmanned manufacturing system for the improvement of production rate. And if you want to introduce automatic or unmanned manufacturing system into the cutting process of cage motor rotor, the selections of effective cutting conditions, rational tool grades and tool angles are necessary. As a result, the selection of cutting conditions, tool grades and tool angles are important factors to production rate.

  • PDF

Tool-path Computing by Slicing Offset Triangles and Tracing Intersections (오프셋 삼각형의 절단과 교선 추적에 의한 공구 경로 계산)

  • Chung Y.C.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.455-464
    • /
    • 2005
  • This paper discusses the methods of computing tool-paths for machining free-form surfaces on 3-axis CNC machines in die and mould making. In computational view this paper describes the characteristics and issues of the geometric information and the shape, which make computing tool-paths difficult. Important points that should be considered in devising a computing method are also discussed. A newly implemented method is explained and compared with an old method for a commercial CAM system. The implemented method is used in a commercial CAM system and the computing time for an example is presented.

A Study on the Effective Cutting Conditions of Cage Motor Rotor Considering Production Rate (II) (생산효율을 고려한 상자형모터회전자의 유효절삭조건에 관한 연구(II))

  • 김희남;이해종;신광호;하상용
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.46-55
    • /
    • 1995
  • The recent development of NC lathe and machining center have enabled automatic or unmanned manufacturing system for the improvement of production rate. And if you want to introduce automatic or unmanned manufacturing system into the cutting process of cage motor rotor, the selections of effective cutting conditions, rational tool grades and tool angles are necessary. As a result, the selection of cutting conditions, tool grades and tool angles are important factors to production rate.

  • PDF

Performance Evaluation of Scheduling Algorithms Using a Grid Toolkit(GridTool2) (그리드 툴킷인 GridTool2를 사용한 스케줄링 알고리즘의 성능 평가)

  • Kang, Oh-Han
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.3
    • /
    • pp.115-124
    • /
    • 2015
  • In this paper, we introduce a web-based scheduling toolkit(GridTool2), which can run simulation of scheduling algorithm in grid system. And we suggest new algorithms which apply additional communication costs to the existing MinMin and Suffrage scheduling algorithms. Since GridTool2 runs in web environment using server and database, it does not require a separate compiler or runtime environment. The GridTool2 allows variables such as communication costs on the web for performance evaluation, and shows simulation results on the web page. The new algorithm with communication costs was tested using GridTool2 to check for performance improvements. The results revealed that the new algorithm showed better performance as more workloads were incorporated to the system.

A Heuristic Algorithm for Tool Loading and Scheduling in a Flexible Manufacturing System with an Automatic Tool Transporter (공구이송이 가능한 유연제조시스템에서의 공구 할당 및 스케쥴링을 위한 발견적 기법)

  • Park, Sang-Sil;Kim, Yeong-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.1
    • /
    • pp.119-135
    • /
    • 1995
  • We consider problems of tool loading and scheduling in a flexible manufacturing system (FMS) in which tool transportation constitutes the major portion of material flows. In this type of FMSs, parts are initially assigned to machines and released to the machines according to input sequencing rules. Operations for the parts released to the machines are performed by tools initially loaded onto the machines or provided by an automatic tool transport robot when needed. For an efficient operation of such systems, therefore, we may have to consider loading and scheduling problems for tools in addition to those for parts. In this paper, we consider three problems, part loading, tool loading, and tool scheduling problems with the overall objective of minimizing the makespan. The part loading problem is solved by a method similar to that for the bin packing problem and then a heuristic based on the frequency of tool usage is applied for tool loading. Also suggested are part input sequencing and tool scheduling rules. To show the effectiveness of the overall algorithm suggested here, we compare it with an existing algorithm through a series of computational tests on randomly generated test problems.

  • PDF

Feedrate Optimization using CL Surface (공구경로 곡면을 이용한 이송속도 최적화)

  • 김수진;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.547-552
    • /
    • 2003
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR (material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over 300m. so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL(cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants wire applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to speaker mold machining. The finishing time was reduced to 12.6%. tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were removed.

  • PDF

Development of Control System of High-speed ATC of Machining Center (Machining Center의 고속 ATC 제어 시스템의 개발)

  • Han, Dong-Chang;Lee, Dong-Il;Song, Yong-Tae;Lee, Seok-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.125-132
    • /
    • 2002
  • We use a compound-cam twin arm structure and random tool access method to achieve a faster ATC (Automatic Tool Changer) system for the accurate position and rotation control of a tool magazine and an exchange am. Based on the data obtained from various sensors, it is possible to follow the sequence of commands in each control step for an exchange arm. However, it is not so easy to reduce the exchange time of the system because of the slow responses of the sensors and execution mode delays of PLC (Programmable Logic Controller) scan time. In this paper, we propose a new programmed limit-switch position control method to obtain the shortest possible delays for the random tool access method and compound-cam twin arm structure. With some experimental results, we have achieved below 0.9sec tool exchange time with the proposed method.

Feed Directional Dynamic Characteristics of the Machine Tool System (공작기계 계 의 이송방향 동특성에 관한 연구)

  • 이종원;조영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.36-45
    • /
    • 1983
  • In order to characterize the machine tool feed-drive dynamics, thread cutting experiments are performed with cutting conditions and slide-way lubrication varied. During the experiments, the carriage, tool post and tail stock accelerations in the feed direction are measured, and analyzed by employing the spectral analysis method. It is found that the tool post vibration in the feed direction during thread cutting operation is mainly due to those of the carriage and the workpiece. Other structure-related vibrations show little effects on the tool post vibration. The characteristics of the carriage vibration is shown to be fairly consistent, except the vibration amplitude, regardless the variations in cutting condition and lubrication within the experimental range. The experimental results suggest that the feeddrive system can be modelled as a 2 DOF damped oscillatory system.

The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Side Milling (워엄 스크루 가공용 사이드 밀링의 공구 간섭 시뮬레이션)

  • Lee, Min-Hwan;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for side milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.

The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Planetary Milling (워엄 스크루 가공을 위한 플래내터리 밀링의 공구 간섭 시뮬레이션)

  • Lee, Min-Hwan;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.47-54
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for planetary milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.