• Title/Summary/Keyword: Tool Structure

Search Result 2,422, Processing Time 0.03 seconds

Application of Sandwich Structure with Rigid Core for High Speed Machine Tool Bed (Rigid Core 샌드위치 구조의 초고속 공작기계 베드 적용에 관한 연구)

  • 서정도;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.113-116
    • /
    • 2003
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool lift. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was designed and manufactured for a high-speed gantry-type milling. Also. its dynamic characteristics were measured by modal tests.

  • PDF

Development of a miniaturized machine tool for machining a micro/meso scale structure (마이크로 및 메조 가공을 위한 소형공작기계 개발)

  • 박성령;이재하;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1907-1910
    • /
    • 2003
  • Miniaturized machine tool can be used to produce 3D features based on CNC and PC-NC technology in the micro/meso scale. Wide applications of CNC technology are developed and there are lots of know-hows in the cutting process and their CNC application. It helps micro/meso scale structure to machine components, which can be used directly for practical applications. In the present research, as the machine tool is miniaturized, the manufacturing machine tools costs less when compared to the equipment used in other micromachining technologies. Moreover, with advancement of micro tool technology, the cutting process can be used to produce micro/meso scale parts. In conclusion, the proposed system can reduce the cost by utilizing the current machining technology, and as a result, complex micro/meso parts can be produced efficiently with high productivity.

  • PDF

Design and Manufacture of Polymer Concrete Machine Tool Bed (폴리머 콘크리트 공작기계 베드의 설계와 제작)

  • 서정도;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.32-36
    • /
    • 2002
  • High-speed movement and high-precision machining are the two most important requirements of present machine tool structures to reduce machining time and to increase the precision of products in various industrial fields such as semiconductor, automobile, and mold fabrication. The high speed operation of machine tools tue usually restricted not only by the low stiffness but also by the low damping of machine tool structures, which induces vibration during high speed machining. If the damping of machine tool structures is low, self induced or regenerative vibrations are bound to occur at high speed operation because the natural frequencies of machine tool structures can not be increased indefinitely. Therefore, the high damping capacity of a machine tool structure is an important factor for high speed machine tool structures. Polymer concrete has high potential for machine tool bed due to its good damping characteristics. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was desisted and manufactured for a high-speed gantry-type milling machine through static and dynamic analyses using finite element method. Then the dynamic characteristics were tested experimentally.

  • PDF

A Tool for Transformation of Analysis to Design in Structured Software Development

  • Park, Sung-Joo;Lee, Yang-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.14 no.2
    • /
    • pp.71-80
    • /
    • 1988
  • The primary purpose of this study is to develop an automation tool capable of converting the specification of structured analysis into that of structured design. Structured Analysis and Structured Design Language (SASDL) is a computer-aided description language based on ERA model and particulariged by ISLDM/SEM. The automation tool utilizes the specifications of data flow diagram described in SASDL to produce their corresponding SASDL specification of structure chart. The main idea behind the automatic conversion process is to categorize the bubbles in data flow diagram and to determine the positions of the bubbles in structure chart according to their categories and the relative locations in data flow diagram. To make the problem into manageable size, the whole system is broken down into separate parts called activity units. A great deal of manual jobs, such as checking processes leveling, checking data derivation of processes, deriving structure chart from data flow diagram, checking any inconsistency between data flow diagram and structure chart and so forth, can be automated by using SASDL and conversion tool. The specification of structure chart derived by conversion tool may be used in an initial step of design to be refined by SASDL users.

  • PDF

Design Optimization of the Rib Structure of a 5-Axis Multi-functional Machine Tool Considering Static Stiffness (정강성을 고려한 5축 복합가공기의 리브 구조 최적설계)

  • Kim, Seung-Gi;Kim, Ji-Hoon;Kim, Se-Ho;Youn, Jae-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2016
  • The need for high-strength, multi-axis, and multi-functional machine tools has recently increased because of part complexity and workpiece strength. However, most of the machine tool manufacturers rely on experience for a detailed design because of the shortcomings in the existing design technology. This study uses a topology optimization method to more effectively design a large multi-functional machine tool considering static stiffness. The ram, saddle, and column parts are important structures in a machine tool. Hence, they are selected for the finite element method analysis. Based on this analysis, the optimized internal rib structure for those parts is designed for desirable rigidity and weight. This structure could possibly provide the required design technology for machine tool manufacturers.

Design Alteration of a Milling Machine Structure for the Improved Stability (동적 안정성 향상을 위한 밀링 머신의 구조개선)

  • Ro, Seung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.72-78
    • /
    • 2006
  • Inherent in machine tool structures are the vibrations which are generated by rotating parts such as motors, spindles and chucks. The vibrations not only hurt the precision machining but also damage the structures, and become more serious with time. Many of the old machine tools show severe vibrations for the desired accuracy of the modern industries. It is too much of a waste, however, to get rid of them as scraps. There have been many researches in order to suppress the vibrations of old machine tool structures using the tool post which utilizes actuators to compensate the existing vibrations and using the dampers or absorbers attached to some critical parts. In this paper, the dynamic properties are analyzed to obtain the natural frequencies and mode shapes of a machine tool structure which reflect the main reasons of the biggest vibrations under the given operating conditions. And the feasibility of improving the stability of the structure has been investigated with minor design changes and expenses. The result of the study shows that simple changes based on proper system identification can considerably improve the stability of the machine tool structure.

  • PDF

An Interactive Character Animation and Data Management Tool (대화형 캐릭터 애니메이션 생성과 데이터 관리 도구)

  • Lee, Min-Geun;Lee, Myeong-Won
    • The KIPS Transactions:PartA
    • /
    • v.8A no.1
    • /
    • pp.63-69
    • /
    • 2001
  • In this paper, we present an interactive 3D character modeling and animation including a data management tool for editing the animation. It includes an animation editor for changing animation sequences according to the modified structure of 3D object in the object structure editor. The animation tool has the feature that it can produce motion data independently of any modeling tool including our modeling tool. Differently from conventional 3D graphics tools that model objects based on geometrically calculated data, our tool models 3D geometric and animation data by approximating to the real object using 2D image interactively. There are some applications that do not need precise representation, but an easier way to obtain an approximated model looking similar to the real object. Our tool is appropriate for such applications. This paper has focused on the data management for enhancing the automatin and convenience when editing a motion or when mapping a motion to the other character.

  • PDF

Manufacture of light-weight machine tool structures using composite materials (복합재료를 이용한 경량 공작기계 구조물 제작에 관한 연구)

  • Suh, Jung-Do;Lee, Dai-Gil;Kim, Hak-Sung;Kim, Jong-Min;Choi, Jin-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.189-196
    • /
    • 2001
  • Machine tools of high-speed and high-precision are required for various fields of industry such as semiconductor, automobile, mold fabrication and so on. Light-weight machine tool structure is essential for reduction of production time through rapid transportation. Also, high damping capacity of the structure is required to obtain precise products without vibration during manufacturing. Composite materials have high potential for machine tool structures due to its high specific stiffness and good damping characteristics. In this study, the design and the manufacture of a hybrid machine tool structure using composite materials was attempted and the damping capacity was investigated experimentally.

  • PDF

Improvement in Prediction Accuracy of Springback for Stamping CAE considering Tool Deformation (금형변형을 고려한 성형 CAE에서의 스프링백 예측정확도 향상)

  • Park, J.S.;Choi, H.J.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.380-385
    • /
    • 2014
  • An analysis procedure is proposed to improve the prediction accuracy of springback as well as to evaluate the structural stability of the tooling used for fabricating a side sill part from UHSS. The analysis couples the stamping analysis and the subsequent analysis of the tool structural. The deformation and stress results for the tool structure are obtained from the proposed analysis procedure. The results show that the amount of deformation and stresses are so high that the tool structure must be reinforced and the tooling design must consider structural stability. Springback is predicted with CAE in order to compare the prediction accuracy between the given tool geometry and the geometry from the structural analysis. The simulation results with the deformed tool can predict the experimental springback tendency accurately.