• Title/Summary/Keyword: Tool State Monitoring

Search Result 113, Processing Time 0.041 seconds

Tool Condition Monitoring using AE Signal in Micro Endmilling (마이크로 엔드밀링에서 AE 신호를 이용한 공구상태 감시)

  • Kang Ik Soo;Jeong Yun Sik;Kwon Dong Hee;Kim Jeon Ha;Kim Jeong Suk;Ahn Jung Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.64-71
    • /
    • 2006
  • Ultraprecision machining and MEMS technology have been taken more and more important position in machining of microparts. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products. Also, the method of micro-grooving using micro endmill is used widely owing to many merit, but has problems of precision and quality of products due to tool wear and tool fracture. This investigation deals with state monitoring using acoustic emission(AE) signal in the micro-grooving. Characteristic evaluation of AE raw signal, AE hit and frequency analysis for condition monitoring is presented. Also, the feature extraction of AE signal directly related to machining process is executed. Then, the distinctive micro endmill state according to the each tool condition is classified by the fuzzy C-means algorithm.

A Study on the Detection of the Abnormal Tool State for Neural Network in Drilling (신경망에 의한 공구 이상상태 검출에 관한 연구)

  • Shin, Hyung-Gon;Kim, Tae-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.821-826
    • /
    • 2001
  • Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. One important aspect in controlling the drilling process is monitoring drill wear status. Accordingly, this paper deals with Basic system and Online system. Basic system comprised of spindle rotational speed, feed rates, thrust, torque and flank wear measured tool microscope. Online system comprised of spindle rotational speed, feed rates, AE signal, flank wear area measured computer vision. On-line monitoring system does not need to stop the process to inspect drill wear. Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. This paper deals with an on-line drill wear monitoring system to fit the detection of the abnormal tool state.

  • PDF

Tool Wear Monitoring in Milling Operation Using ART2 Neural Network (ART2 신경회로망을 이용한 밀링공정의 공구마모 진단)

  • Yoon, Sun-Il;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.120-129
    • /
    • 1995
  • This study introduces a tool wear monitoring technology in face milling operation comprised of an unsupervised neural network. The monitoring system employs two types of sensor signal such as cutting force and acceleration in sensory detection state. The RMS value and band frequency energy of the sensor signals are calculated for te input patterns of neural network. ART2 neural network, which is capable of self organizing without supervised learning, is used for clustering of tool wear states. The experimental results show that tool wear can be effectively detected under various cutting conditions without prior knowledge of cutting processes.

  • PDF

Condition Monitoring of Micro Endmill using C-means Algorithm (C-means 알고리즘을 이용한 마이크로 엔드밀의 상태 감시)

  • Kwon Dong-Hee;Jeong Yun-Shick;Kang Ik-Soo;Kim Jeon-Ha;Kim Jeong-Suk
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.162-167
    • /
    • 2005
  • Recently, the advanced industries using micro parts are rapidly growing. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro to micro parts. Also, the method of micro-grooving using micro endmilling is used widely owing to many merit, but has problems of precision and quality of products due to tool wear and tool fracture. This study deals with condition monitoring using acoustic emission(AE) signal in the micro-grooving. First, the feature extraction of AE signal directly related to machining process is executed. Then, the distinctive micro endmill state according to the each tool condition is classified by using the fuzzy C-means algorithm, which is one of the methods to recognize data patterns. These result is effective monitoring method of micro endmill state by the AE sensing techniques which can be expected to be applicable to micro machining processes in the future.

  • PDF

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

Diagnosis of tool wear and fracture using cutting force signal characteristics and histogram analysis (절삭력 신호특성과 히스토그램 분석에 의한 공구마모와 파손 진단)

  • 정진용;유기현;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.75-81
    • /
    • 1997
  • Automatic monitoring the cutting state is one of the important problems to increase the reliability of modern machining processes. In this study, cutting force signals were used in order to monitor the tool wear and fracture in the turning process. Turning experiments were performed using cemented carbide insert tools(K20) and STS304 steel as a workpiece. Cutting force signal characteristics and histogram analysis method were used to recognize the cutting states. It was found that tool wear and fracture can be diagnosed from the cutting force signal coefficient of variation(C.V.) and histogram analysis.

  • PDF

An Expert System Using Diagnostic Parameters for Machine tool Condition Monitioring (공작기계 상태감시용 진단파라미터 전문가 시스템)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.112-122
    • /
    • 1996
  • In order to monitior machine tool condition and diagnose alarm states due to electrical and mechanical faults, and expert system using diagnostic parameters of NC machine tools was developed. A model-based knowledge base was constructed via searching and comparing procedures of diagnostic parameters and state parameters of the machine tool. Diagnostic monitoring results generate through a successive type inference engine were graphically displayed on the screen of the console. The validity and reliability of the expert system was rcrified on a vertical machining center equipped with FANUC OMC through a series of experiments.

  • PDF

A Study on the Detection of the Drilled Hole State In Drilling (드릴 가공된 구멍의 상태 검출에 관한 연구)

  • 신형곤;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.8-16
    • /
    • 2003
  • Monitoring of the drill wear :md hole quality change is conducted during the drilling process. Cutting force measured by tool dynamometer is a evident feature estimating abnormal state of drilling. One major difficulty in using tool dynamometer is that the work-piece must be mounted on the dynamometer, and thus the machining process is disturbed and discontinuous. Acoustic transducer do not disturb the normal machining process and provide a relatively easy way to monitor a machining process for industrial application. for this advantage, AE signal is used to estimate the abnormal fate. In this study vision system is used to detect flank wear tendency and hole quality, there are many formal factors in hole quality decision circularity, cylindricity, straightness, and so of but these are difficult to measure in on-line monitoring. The movement of hole center and increasement of hole diameter is presented to determine hole quality. As the results of this experiment AE RMS signal and measurements by vision system are shorn the similar tendency as abnormal state of drilling.