• Title/Summary/Keyword: Tool Paths

Search Result 170, Processing Time 0.029 seconds

A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

  • He, Shanshan;Ou, Daojiang;Yan, Changya;Lee, Chen-Han
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.218-232
    • /
    • 2015
  • Piecewise linear (G01-based) tool paths generated by CAM systems lack $G_1$ and $G_2$ continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA) is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA) to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1) an improved technique for initial control point determination over Dominant Point Method, (2) an algorithm that updates foot point parameters as needed, (3) analysis of the degrees of freedom of control points to insert new control points only when needed, (4) chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

Development of a Computer Graphics-Based Prototype CAD Tool for Planning Tendon Paths in Hand Rehabilitative Surgery (손 재활수술을 위한 힘줄경로 설계용 컴퓨터그래픽스 기반의 프로토타입 CAD 툴 개발)

  • Yoon, In-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3435-3446
    • /
    • 1999
  • The application of Computer Aided Design (CAD) tool to rehabilitative surgery of the hand is a new field of endeavor. It is considered that there are currently no existing systems designed to assist the orthopedic surgeon in planning complex procedures such as tendon transfer operations. Most tendon transfer operations are performed by surgeons on the basis of knowledge and experience gained through years of practice. However, with the help of this computer graphics-based CAD tool for planning tendon paths, the planning and the evaluation for the best operation on patients' hands also may be possible. The purpose of this study was to model kinematically the structure of the hand and design a prototype tendon path planning tool with a standard computer graphics library, in order for surgeons to perform tendon transfer surgery more objectively and quantitatively.

  • PDF

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

Visualization of Exception Propagation for Java Programs based on Static Analysis (정적분석을 이용한 자바 프로그램의 예외 전파 시각화)

  • 허순희;창병모
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.696-702
    • /
    • 2003
  • This paper presents a static analysis based on set-based framework which estimates exception propagation paths of Java programs, and a visualization tool which visualizes propagation paths of exceptions using the static analysis information. We have implemented the exception propagation analysis and a visualization tool, which can guide programmers to handle exceptions more effectively.

Fabrication of 3D Micro Structure Using Micro Electrical Discharge Milling (마이크로 방전 밀링을 이용한 미세 구조물 제작)

  • 이병욱;이상민;김보현;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.41-47
    • /
    • 2004
  • As mechanical structures are minimized, the demand on micro dies and molds has increased. Machining complex 3D shapes requires fabrication procedures for preparing the electrodes. Micro electrical discharge milling using a simple shape electrode can produce 3D micro structure. In this paper the machining characteristics of micro electrical discharge milling according to depth of cut and capacitance are investigated. The machining time is diminished when simple tool-paths and algorithms for changing the feedrate are applied. But a distorted bottom shape and a tapered wall shape are inevitable after machining. The distorted bottom shape and the taper angle of wall are reduced by finish machining.

Finishing of Scupltured Surface through Cusp Pattern Control and Micro-ball End Milling (Cusp 패턴 조정과 미소 볼엔드 밀링을 이용한 3차원 자유곡면의 다듬질)

  • Sim, C.G.;Yang, M.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.177-183
    • /
    • 1994
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-from surfaces. However, cusps(or scallops) remaining at the machined part along the cutter paths require anothe finish process such as polishing or grinding. In this study, a high sped micro ball-end milling method has been suggested for the finish of free- form surfaces. A new tool path which makes the geometrical roughness of workpiece be constant through the machined surface has been developed. In the high speed machining of micro ball-end muling experimets, the developed tool paths have been successfully applied. And it was concluded that the surface roughness from this finish cuts of micro ball-end milling process was acceptable.

  • PDF

Selection of Machining Inclination Angle of Tool Considering Tool Wear in High Speed Ball End Milling (고속 볼앤드밀링에서 공구마모를 고려한 공구의 가공경사각 선정)

  • Ko, Tae-Jo;Jung, Hoon;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.135-144
    • /
    • 1998
  • High speed machining is a key issue in die and mold manufacturing recently. Even though this technology has great potential of high productivity. tool wear accelerated by high cutting speed to the hardened materials is other barrier. In this research, we attempted to reduce tool wear by considering tool inclination angle between tool and workpiece. The boundary lines describing machined sculptured surfaces were represented by both of cutting envelop condition and the geometric relationship of successive tool paths. Chip cross section, and cutting length could be obtained from the calculated cutting edge and the rotational engagement angle. From the simulation results, machining inclination angle of tool of $15^\circ$ was good enough from the point of tool wear and cutting force, and this value was verified through the cutting experiment of high speed ball end milling.

  • PDF

Estimating the Effects of Multipath Selection on Concurrent Multipath Transfer

  • Wang, Jingyu;Liao, Jianxin;Wang, Jing;Li, Tonghong;Qi, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1406-1423
    • /
    • 2014
  • Multi-mode device which combines multiple access technologies into a device will offer more cost-effective solution than a sole access implementation. Its concurrent multipath transfer (CMT) technology can transmit media flows over multiple end-to-end paths simultaneously, which is essential to select at least two paths from all available paths. At real networks, different paths are likely to overlap each other and even share bottleneck, which can weaken the path diversity gained through CMT. Spurred by this observation, it is necessary to select multiple independent paths as much as possible to avoid underlying shared bottleneck between topologically joint paths. Recent research in this context has shown that different paths with shared bottleneck can weaken the path diversity gained through CMT. In our earlier work, a grouping-based multipath selection (GMS) mechanism is introduced and developed. However, how to estimating the selection is still to be resolved. In this paper, we firstly introduce a Selection Correctness Index (SCI) to evaluate the correctness of selection results in actual CMT experiment. Therefore, this metric is helpful to discuss and validate the accuracy of the output paths. From extensive experiments with a realized prototype, the proposed scheme provides better evaluation tool and criterion in various network conditions.

Machining Characteristics of Hemisphere Shape by Ball Endmilling (볼엔드밀가공에 의한 구면형상의 가공특성)

  • Wang, Duck Hyun;Kim, Won Il;Lee, Yun Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • Hemisphere shapes were machined for different tool paths and machining conditions with ball endmill cutters. It was also found out how feedrate affect the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting IS obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. It was found that the tool deflection is getting better as tool path is going to far from the center for convex surface.

  • PDF

Compensation for Machining Error included by Tool Deflection Using High-Speed Camera (고속카메라를 이용한 절삭공구변형의 보상에 관한 연구)

  • Bae, J.S.;Kim, G.H.;Yoon, G.S.;Seo, T.I.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.15-19
    • /
    • 2007
  • This paper presents an integrated machining error compensation method based on captured images of tool deflection shapes in flat end-milling processes. This approach allows us to avoid modeling machining characteristics (cutting forces, tool deflections and machining errors etc.) and accumulating calculation errors induced by several simulations. For this, a high-speed camera captured images of real deformed tool shapes which were cutting under given machining conditions. Using image processes and a machining error model, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool paths. This corrected tool path can effectively reduce machining errors in the flat end-milling process. Experiments are carried out to validate the approaches proposed in this paper. The proposed error compensation method can be effectively implemented in a real machining situation, producing much smaller errors.