• Title/Summary/Keyword: Tool Management System

Search Result 1,708, Processing Time 0.032 seconds

Multi-family Housing Complex Breakdown Structure for Decision Making on Rehabilitation (노후 공동주택 개선여부 의사결정을 위한 공동주택 분류체계 개발)

  • Hong, Tae-Hoon;Kim, Hyun-Joong;Koo, Choong-Wan;Park, Sung-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.101-109
    • /
    • 2011
  • As climate change is becoming the main issue, various efforts are focused on saving building energy consumption both at home and abroad. In particular, it is very important to save energy by maintenance, repair and rehabilitation of existing multi-family housing complex, because energy consumption in residential buildings is not only forming a great part of gross energy consumption in Korea but the number of deteriorated complexes is also sharply increasing. However, energy saving is not considered as a main factor in decision making on rehabilitation project. Also, any supporting tool is not appropriately prepared in existing process. As the first step for development of decision support system on rehabilitation, this paper developed a breakdown structure, which makes clusters of multi-family housing complexes. Decision tree, one of data mining methods, was used to make clusters based on the characteristics and energy consumption data of multi-family housing complexes. Energy saving and CO2 reduction will be maximized by considering energy consumption during rehabilitation process of multi-family housing complex, based on these results and following research.

Health Status of Vulnerable Preschool Children and Their Mothers' Health Management (취약계층 학령전기 아동의 건강상태와 어머니의 아동 건강관리실태)

  • Kang, Young-Sil;Kwon, In-Soo
    • Child Health Nursing Research
    • /
    • v.19 no.3
    • /
    • pp.159-167
    • /
    • 2013
  • Purpose: The purpose of this study is to find out preschool children's health status and their mothers' health management in the vulnerable classes. Methods: The assessment tool was developed, taken into consideration existing studies, materials produced by the customized visiting health care system, and review of visiting nurses of health centers and related experts. Data were collected January to February 2010 from 259 mothers by visiting nurses, and analyzed using SAS program for descriptive statistics. Results: Body weight less than 3 percentile was found for 5.0% children and over 97 percentile for 7.7%. Atopy was found in 17.8% children, no hand-washing after toileting and before meal in 30.9% and 36.7% respectively, no breakfast in 15.8%, and irregular meal in 32.0%. Sex education was made by 45.7% mothers, regular dental check by 56.6%, and hearing and eyesight test by 61.1% and 66.8% respectively. Home environment for upbringing is 34.3 in the scale of 41, and accident prevention 17.5 in the scale of 22. Conclusion: It is necessary to make an intervention on children's weight, personal sanitation and meal time in the vulnerable classes. Mothers need to be educated for appropriate health care, and home environments to improve upbringing and accident prevention.

Direct Determination of Soil Nitrate Using Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) (중적외선 분광학을 이용한 토양 내의 질산태 질소 정량분석)

  • Choe, Eunyoung;Kim, Kyoung-Woong;Hong, Suk Young;Kim, Ju-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.267-272
    • /
    • 2008
  • Mid-infrared (MIR) spectroscopy, particularly Fourier transform infrared spectroscopy (FTIR), has emerged as an important analytical tool in quantification as well as identification of multi-atomic inorganic ions such as nitrate. In the present study, the possibility of quantifying soil nitrate via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) without change of a sample phase or with least treated samples was examined. Four types of soils were spectrally characterized in terms of unique bands of soil contents and interferences with nitrate bands in the range of $2000-1000cm^{-1}$. In order to reduce the effects of soil composition on calibration model for nitrate, spectra transformed to the 1st order derivatives were used in the partial least squared regression (PLSR) model and the classification procedure associated with input soil types was involved in calibration system. PLSR calibration models for each soil type provided better performance results ($R^2$>0.95, RPD>6.0) than the model considering just one type of soil as a standard.

Evaluation Method of Green Construction Technologies Using Integrated LCC and LCA Analysis (LCC-LCA 통합 분석에 의한 친환경 건설기술 평가방법)

  • Kim, Yoon-Duk;Cha, Hee-Sung;Kim, Kyung-Ra;Shin, Dong-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.91-100
    • /
    • 2011
  • Green technologies of buildings are spreading for saving resource and energy consumption during life cycle of buildings. However, selection of optimized the technologies for applying projects is needed a lot of time and costs. Therefore prioritization is necessary to apply the technologies for buildings. An evaluation of economic value for the technologies is significant for prioritization of the technologies, however, the current evaluation system of economic value for technologies is not reflected the accurate features of the technologies. Green technologies have the objectives for reducing the emission of CO2 and saving the cost during the whole lifecycle of buildings. Thus the evaluation of economic feasibility for green technologies is needed to include the economic value from improving the environment. This paper developed the economic evaluation method integrated with LCC and LCA to accurately analyze the economic value for green technologies. Moreover, this paper drew the priority of the technologies by conducting case studies with the integrated method and analyzing the results with AHP. The conclusion of case studies, Green technologies is worth more if to include the economic value from improving the environment. Then in analysis of priority, Green intelligent component technologies were rated the highest. The conclusion of the study is able to utilize the supporting tool for making decision to select the optimized technologies for the projects and precedence study for developing future research of prioritization for green technologies. The future study for improving the developed method will supplement the various evaluation factors and apply the detailed weight to analyze the priority of green technologies.

Market Discipline by Depositors : the Case of Mutual Savings Banks in Korea (상호저축은행과 예금자에 의한 시장규율)

  • Park, Jung-Hee
    • The Korean Journal of Financial Management
    • /
    • v.26 no.1
    • /
    • pp.95-125
    • /
    • 2009
  • This paper examines the disciplinary effect of deposits using the semiannual accounting data of mutual savings banks(henceforth 'MSBs') in Korea for the period of 2003 through 2007. I find overall strong evidence in favor of the existence of market discipline in the industry. MSBs with higher BIS ratio and lower NPL ratio turn out to have higher increase rate of deposits than MSBs with lower such ratios. The coefficient of NPL ratio becomes greater with time, suggesting that the effect is cumulative. It turns out that depositors respond more sensitively to NPL ratio than BIS ratio in a period of MSB failure. On the other hand, MSBs turn out to act very positively responding to the depositors' discipline. They increase BIS ratio or decrease NPL ratio following the previous decrease in deposits. Government authorities need to make more efforts to develop a suitable incentive system (e.g. penalties on a false disclosure) to improve the efficiency of disclosure by MSBs. Moreover, they need to acknowledge the importance of NPL ratio as a market disciplinary tool which has been becoming more important, especially in times of MSB failure.

  • PDF

3D Modeling of Turbid Density Flow Induced into Daecheong Reservoir with ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청댐 유입탁수의 3차원 모델링)

  • Chung, Se-Woong;Lee, Heung-Soo;Ryoo, Jae-Il;Ryu, In-Gu;Oh, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1187-1198
    • /
    • 2008
  • Many reservoirs in Korea and their downstream environments are under increased pressure for water utilization and ecosystem management from longer discharge of turbid flood runoff compared to a natural river system. Turbidity($C_T$) is an indirect measurement of water 'cloudiness' and has been widely used as an important indicator of water quality and environmental "health". However, $C_T$ modeling studies have been rare due to lack of experimental data that are necessary for model validation. The objective of this study is to validate a coupled three-dimensional(3D) hydrodynamic and particle dynamics model (ELCOM-CAEDYM) for the simulation of turbid density flows in stratified Daecheong Reservoir using extensive field data. Three different groups of suspended solids (SS) classified by the particle size were used as model state variables, and their site-specific SS-$C_T$ relationships were used for the conversion between field measurements ($C_T$) and state variables (SS). The simulation results were validated by comparing vertical profiles of temperature and turbidity measured at monitoring stations of Haenam(R3) and Dam(R4) in 2004. The model showed good performance in reproducing the reservoir thermal structure and propagation of stream density flow, and the magnitude and distribution of turbidity in the reservoir were consistent with the field data. The 3D model and turbidity modeling framework suggested in this study can be used as a supportive tool for the best management of turbidity flow in other reservoirs that have similar turbidity problems.

Automation of Information Extraction from IFC-BIM for Indoor Air Quality Certification (IFC-BIM을 활용한 실내공기질 인증 요구정보 생성 자동화)

  • Hong, Simheee;Yeo, Changjae;Yu, Jungho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.3
    • /
    • pp.63-73
    • /
    • 2017
  • In contemporary society, it is increasingly common to spend more time indoors. As such, there is a continually growing desire to build comfortable and safe indoor environments. Along with this trend, however, there are some serious indoor-environment challenges, such as the quality of indoor air and Sick House Syndrome. To address these concerns the government implements various systems to supervise and manage indoor environments. For example, green building certification is now compulsory for public buildings. There are three categories of green building certification related to indoor air in Korea: Health-Friendly Housing Construction Standards, Green Standard for Energy & Environmental Design(G-SEED), and Indoor Air Certification. The first two types of certification, Health-Friendly Housing Construction Standards and G-SEED, evaluate data in a drawing plan. In comparison, the Indoor Air Certification evaluates measured data. The certification using data from a drawing requires a considerable amount of time compared to other work. A 2D tool needs to be employed to measure the area manually. Thus, this study proposes an automatic assessment process using a Building Information Modeling(BIM) model based on 3D data. This process, using open source Industry Foundation Classes(IFC), exports data for the certification system, and extracts the data to create an Excel sheet for the certification. This is expected to improve the work process and reduce the workload associated with evaluating indoor air conditions.

A Web-based Simulation Environment based on the Client/Server Architecture for Distance Education: SimDraw (원격교육을 위한 클라이언트/서버구조의 웹 기반 시뮬레이션 환경 : SimDraw)

  • 서현곤;사공봉;김기형
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1080-1091
    • /
    • 2003
  • Recently, the distance education has been rapidly proliferated with the rapid growth of the Internet and high speed networks. There has been relatively much research with regard to online lecture (teaching and studying) tools for the distance education, compared to the virtual laboratory tools (for self-study and experiments). In this paper, we design and implement a web-based simulation tool, named as SimDraw, for the virtual laboratory in the distance education. To apply the web-based simulation technology into the distance education, some requirements should be met; firstly, the user interface of the simulation should be very easy for students. Secondly, the simulation should be very portable to be run on various computer systems of remote students. Finally, the simulation program on remote computers should be very thin so that students can easily install the program onto their computers. To meet these requirements, SimDraw adopts the client/server architecture; the client program contains only model development and animation functions so that no installation of a client program onto student's system is required, and it can be implemented by a Java applet in Web browsers. The server program supports client programs by offering the functions such as remote compiling, model storing, library management, and user management. For the evaluation of SimDraw, we show the simulation process using the example experimentation of the RIP(Routing Information Protocol) Internet routing protocol.

Estimation of Nonpoint Source Pollutant Loads for Rural Watershed by AvSWAT (AvSWAT를 이용한 농촌유역 비점원 오염물질 부하량 예측)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Han, Kuk-Heon;Ruy, Jong-Su;Kim, Suk-Cheol;Yun, Sun-Gang;Lee, Jeong-Taek;Kwun, Soon-Kuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • This study was conducted to evaluate the characteristics of nonpoint source pollutants discharge from a small rural watershed. A typical rural area in Gongju City, Korea, was selected as the research site. Water quality and quantity in streams and rainfall samples were analyzed periodically from May to October 2005. Pollutant loads were estimated from a nonpoint source pollution model (AvSWAT, Arcview Soil and Water Assessment Tool). During the rainy season, from June 26 to 30 September 2005 and the dry season, before 26 June and after 30 September 2005, biological oxygen demands and chemical oxygen demands accounted for 91.3% and 93.7% of annual load, respectively, while total-N and total-P were 97.1% and 91.1% of annual load, respectively. The observed stream flow was $66.5m^3sec^{-1}$, while simulation stream flow was $66.2m^3sec^{-1}$. That can be assumed that simulation can be used to estimate the stream flow without practical measurement. However, the runoff trend following the occurrence of a storm event was not recorded properly.

A Cross-check based Vulnerability Analysis Method using Static and Dynamic Analysis (정적 및 동적 분석을 이용한 크로스 체크기반 취약점 분석 기법)

  • Song, Jun-Ho;Kim, Kwang-Jik;Ko, Yong-Sun;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.863-871
    • /
    • 2018
  • Existing vulnerability analysis tools are prone to missed detections, incorrect detections, and over-detection, which reduces accuracy. In this paper, cross-checking based on a vulnerability detection method using static and dynamic analysis is proposed, which develops and manages safe applications and can resolve and analyze these problems. Risks due to vulnerabilities are computed, and an intelligent vulnerability detection technique is used to improve accuracy and evaluate risks under the final version of the application. This helps the development and execution of safe applications. Through incorporation of tools that use static analysis and dynamic analysis techniques, our proposed technique overcomes weak points at each stage, and improves the accuracy of vulnerability detection. Existing vulnerability risk-evaluation systems only evaluate self-risks, whereas our proposed vulnerability risk-evaluation system reflects the vulnerability of self-risk and the detection accuracy in a complex fashion to evaluate relative. Our proposed technique compares and analyzes existing analysis tools, such as lists for detections and detection accuracy based on the top 10 items of SANS at CWE. Quantitative evaluation systems for existing vulnerability risks and the proposed application's vulnerability risks are compared and analyzed. We developed a prototype analysis tool using our technique to test the application's vulnerability detection ability, and to show that our proposed technique is superior to existing ones.