• Title/Summary/Keyword: Tool Design and Modification

Search Result 88, Processing Time 0.027 seconds

Determination of the Tooth Modification Amounts for Minimizing the Vibration of Helical Gear (헬리컬 치차의 진동최소화를 위한 치면 수정량의 결정)

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.199-205
    • /
    • 2000
  • The vibration and noise of gears is due to the vibration exciting force caused by the tooth stiffness which changes periodically as the mesh of teeth proceeds and by the transmission error, that is, the rotation delay between driving gear and driven gear caused by manufacturing error and alignment error in assembly and so on. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification, end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the mesh analysis of gears. The constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth fillet stress, surface durability and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. And, since the aspect ratio is an important parameter of tooth modification, we investigate the relation between it and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is to be utilized to resolve the problem of vibration of helical gears.

  • PDF

Improvement of Feeling Quality of a Stamped Member for an Autobody with the Finite Element Analysis (유한요소해석을 이용한 자동차용 박판부재의 감성품질 개선)

  • Kim S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.252-255
    • /
    • 2004
  • Design modification of the stamping die for the upper member of a front end module carrier is carried out in order to improve the feeling qualify of the final product. The small inferiority induced by wrinkling near the wall of the FEM upper member has been inspected after the draw-forming process. The finite element simulation shows that the excess metal is developed by the irregular contact of the blank the tool and it remains after the final stroke. This paper proposes two guidelines for the modification: one is to add the draw-bead; and the other is to modify the tool shape such as the forming shape at the wall. Simulation results show that the proposed guidelines both guarantee the improved feeling quality.

  • PDF

Analysis-based Die Face Design for the Improvement of Surface Quality for a Heat Protect Panel of an Automobile (차량용 열차단판의 면품질 개선을 위한 성형해석 기반 금형면 설계)

  • Kim, K.P.;Kim, S.H.;Lee, D.G.;Jang, K.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.278-283
    • /
    • 2008
  • This paper concerns the die face design for a heat protect panel aided by the finite element forming analysis in order to eliminate the surface defect and to improve the surface quality. The CAE procedure of the stamping process is introduced in order to reveal the reason of surface inferiorities and to improve surface quality. Complicated shape of the product induces the surface inferiorities such as wrinkling due to the insufficient restraining force of the forming blank and the non-uniform contact of the blank with the tools. This paper proposes a new guideline for the die design which includes the modification of tool shapes and addition of the draw-beads on the tool surface for ensuring the increased the restraining force with the uniform contact condition. The effectiveness of the proposed design is verified by the forming analysis and is confirmed by the tryout operation in the press shop. The analysis and test results show that the modified process parameters such as tool shapes and draw-beads can reduce the tendency of wrinkling and improve surface quality.

Improvement of Computer-Aided Manufacturing (CAM) Software for Laser Machining

  • Bayesteh, Abdoleza;Ko, Junghyuk;Ahmad, Farid;Jun, Martin B.G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.374-385
    • /
    • 2015
  • In this paper, effective and user friendly CAM software is presented that automatically generates any three dimensional complex toolpaths according to a CAD drawing. In advanced manufacturing, often it is essential to scan the sample following a complex trajectory which consists of short (few microns) and multidirectional moves. The reported CAM software offers constant velocity for all short trajectory elements and provides an efficient shift of tool path direction in sharp corners of a tool trajectory, which is vital for any laser, based precision machining. The software also provides fast modification of tool path, automatic and efficient sequencing of path elements in a complicated tool trajectory, location of reference point and automatic fixing of geometrical errors in imported drawing exchange files (DXF) or DWG format files.

A Fundamental Study on the Design of Two-axis Drive Manipulator for Laser-assisted Machining (레이저보조가공을 위한 2-축 구동 매니퓰레이터 설계에 관한 기초 연구)

  • Kim, Dong-Hyeon;Cha, Na-Hyeon;Kim, Tae-Woo;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.813-817
    • /
    • 2012
  • Laser assisted machining (LAM) is machining method that performs a machining for workpieces using laser beam preheating. LAM is in the early stage of its applications and has only been used in limited fields including turning, planning and micro end-milling throughout the world. LAM system should be able to move to the laser radiation direction and to rotate on a tool path for machining of complex shapes. A laser module with two-axis manipulator is designed in this study. It has been performed static structural analysis and shape modification of the manipulator. As the results of shape modification it has been obtained better results than the initial model. These results will be able to use in development of the two-axis manipulator.

Design of Height Adjustment Mechanism for Flat Panel Display by DFSS (DFSS에 의한 FPD용 높이 조절기구 설계)

  • Cho, Gyu-Yeol;Cheong, Seon-Hwan;Choi, Seong-Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • This study was carried out to minimize the lifting force and to design the slim sized frame of a height adjustment mechanism. This unit is designed for the display devices in order to enhance the ergonomics for effective height adjustment as well as to achieve much slimmer frame for the pedestal. A tolerance analysis of 6 sigma was applied to achieve smooth lift at design stage not to change the tolerance specification of gap several times in a roller type of lifting mechanism at mass production stage. The specification of minimum gap and the target of production yield ratio were agreed with a quality team before tooling. A DFSS simulation on drawings had been done with reasonable tolerance and achievable standard deviation(${\sigma}$) several times until the target specification of gap and yield ratio was met. Once tolerance and deviation(${\sigma}$) were fixed tooling start was done successfully. A CAE method was applied to achieve a slim design. Design parameters were frozen when those parameters matched the reference strength data of standard model. Through those tolerance analysis and CAE simulation the number of tool modification was reduced and production yield ratio was raised up without arguing quality specification at production stage in the end.

Genetic Algorithm Based Continuous-Discrete Optimization and Multi-objective Sequential Design Method for the Gear Drive Design (기어장치 설계를 위한 유전알고리듬 기반 연속-이산공간 최적화 및 다목적함수 순차적 설계 방법)

  • Lee, Joung-Sang;Chong, Tae-Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.205-210
    • /
    • 2007
  • The integration method of binary and real encoding in genetic algorithm is proposed to deal with design variables of various types in gear drive design. The method is applied to optimum design of multi-stage gear drive. Integer and Discrete type design variables represent the number of teeth and module, and continuous type design variables represent face width, helix angle and addendum modification factor etc. The proposed genetic algorithm is applied for the gear ratio optimization and the volume optimization(minimization) of multi-stage geared motor which is used in field. In result, the proposed design optimization method shows an effectiveness in optimum design process and the new design has a better results compared with the existing design.

Construction of information database with tool compensation histories for the tool design of a pillar part (차량 필러부품 프레스 금형설계를 위한 금형보정이력 정보 데이터베이스 구축)

  • Kim, Se-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.43-50
    • /
    • 2012
  • Database for the information of the shape accuracy is constructed with the finite element stamping analysis of the center pillar member. Analyses are carried out in order to investigate the effect of tool compensation on the product quality previously performed by an expert in the press shop. The compensation procedure is provided with three sequences for improving shape accuracy of the member by reducing the amount of springback. The analysis result shows that shape inaccuracy in the product is caused by sagging and twisting phenomena from displacement of the section part due to excessive amount of springback. From the database with springback analyses, design modification guidelines are proposed for improving the shape accuracy. The guideline is directly applied to a member with the similar shape and the sound product is obtained successfully reducing the amount of springback.

Simulation-based Stamping Process Design for a Pulsator Cover of a Washing Machine with Ferritic Stainless Steel Sheet (페라이트계 스테인리스 판재 적용을 위한 세탁기 회전날개의 전산 해석기반 성형공정설계)

  • Kim, Se-Ho;Kim, Kee-Poong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • This paper replaces a conventional austenitic stainless steel sheet to a ferritic stainless steel for the cost reduction of a pulsator cover of a washing machine. However, ferritic stainless steel has poor formability in comparison with austenitic one. The low formability of ferritic steel results in problems during stamping such as fracture, wrinkling, shape inaccuracy and so on. Design modification of the stamping tool is carried out with the aid of the finite element analysis for multistage stamping process of the pulsator cover. The simulation results show that fracture occurs on top of the product while wrinkles are generated by the excess metal near the wing part. Modification of the initial stamping die is performed to improve metal flow and to eliminate problems during the stamping process. Simulation with the modified design fully demonstrates that safe forming is possible without inferiorities.

Software Tool Development for structured Programming (구조적 프로그램을 위한 소프트웨어 Tool의 개발)

  • Lee, Dong-Choon;Kim, Seong-Jong;Kim, Chang-Bok;Shin, In-Chul;Rhee, Sang-Burm
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1140-1143
    • /
    • 1987
  • The purpose of this study is to develop a systematic tool which can reduce the abstractness of the structured programming disciplines by a system. The system is an interactive software which forces the user to think and write software in a hierarchical stepwise refinement fashion for an implementation of the software design. The program produced by the system has a program control structure and a logic flow which are very easy to recognize. The modification of a program is, therefore, easier to attain by altering the specifications of the modules involved. It is possible to reduce the programming errors because of those characteristics.

  • PDF